On discrete, continuous and arithmetic aspects of Fourier uncertainty

Alex losevich

September 2024: LMS-Lecture Series in Ukraine

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 1/108

Finite Signals and Discrete Fourier transform

• Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 2/108

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of f is transmitted, where

$$\widehat{f}(m) = N^{-\frac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{\frac{2\pi i t}{N}}.$$

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of *f* is transmitted, where

$$\widehat{f}(m) = N^{-rac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{rac{2\pi i t}{N}}.$$

• Fourier Inversion says that we can recover the signal by using the Fourier inversion:

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m).$$

Exact recovery problem

• The basic question is, can we recover *f* **exactly** from its discrete Fourier transforms if

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

Exact recovery problem

• The basic question is, can we recover *f* **exactly** from its discrete Fourier transforms if

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

• The answer turns out to be <u>YES</u> if f is supported in $E \subset \mathbb{Z}_N^d$, and

$$|E|\cdot|S|<\frac{N^d}{2},$$

with the main tool being the Fourier Uncertainty Principle.

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

イヨト イヨト

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

• (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

* 原 ▶ * 原 ▶ ...

э

and

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

• (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

and

(Plancherel)

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2 = \sum_{x\in\mathbb{Z}_N^d} |f(x)|^2.$$

* 原 ▶ * 医 ▶ …

э

Proof of Fourier Inversion

• We have

 $N^{-\frac{d}{2}} \sum \chi(x \cdot m) \widehat{f}(m)$ $m \in \mathbb{Z}_N^d$

米 原 トーイ 原 ト

э

Proof of Fourier Inversion

• We have

$$N^{-\frac{d}{2}}\sum_{m\in\mathbb{Z}_N^d}\chi(x\cdot m)\widehat{f}(m)$$

$$= N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) N^{-\frac{d}{2}} \sum_{y \in \mathbb{Z}_N^d} \chi(-y \cdot m) f(y)$$

크

∋ ► < ∃ ►

Proof of Fourier Inversion

We have $N^{-\frac{d}{2}} \sum \chi(x \cdot m) \widehat{f}(m)$ $m \in \mathbb{Z}_{N}^{d}$ ۲ $= N^{-\frac{d}{2}} \sum \chi(x \cdot m) N^{-\frac{d}{2}} \sum \chi(-y \cdot m) f(y)$ $m \in \mathbb{Z}_N^d$ $v \in \mathbb{Z}_{N}^{d}$ ۲ $f(y) = \sum f(y) N^{-d} \sum \chi((x-y) \cdot m) = f(x)$ $v \in \mathbb{Z}_{N}^{d}$ $m \in \mathbb{Z}_{N}^{d}$ by orthogonality.

| (注) | (三) |

э

• We have

イロン 不得 とうほとう ほど

æ

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 6/108

• We have

٠

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

★ 原 ト ★ 原 ト

< 行

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 6 / 108

• We have

٠

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

$$=\sum_{x,y\in\mathbb{Z}_N^d}\overline{f(x)}f(y)N^{-d}\sum_{m\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)$$

★ 原 ト ★ 原 ト

< 行

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 6 / 108

• We have

٥

٠

$$\sum_{m\in\mathbb{Z}_N^d} \left|\widehat{f}(m)\right|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

$$=\sum_{x,y\in\mathbb{Z}_N^d}\overline{f(x)}f(y)N^{-d}\sum_{m\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)$$

 $=\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2.$

医原子 医甲子

< 行

크

• Let N be an odd prime and define

$$P = \{x \in \mathbb{Z}_N^d : x_d = x_1^2 + \dots + x_{d-1}^2\}.$$

We have $\widehat{1}_P(m) = N^{-rac{d}{2}} \sum_{y \in \mathbb{Z}_N^{d-1}} \chi(-y \cdot m' + ||y||m_d),$

where

$$||y|| = y_1^2 + y_2^2 + \dots + y_{d-1}^2.$$

Paraboloid (continued)

• Suppose that $m_d = 0$ and $m' \neq \mathbf{0}$. Then

$$\widehat{1}_P(m',0) = N^{-\frac{d}{2}} \sum_{y \in \mathbb{Z}_N^{d-1}} \chi(-y \cdot m) = 0.$$

4 E 🕨 4 E 🕨

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 8/108

Paraboloid (continued)

• Suppose that $m_d=0$ and $m'\neq {f 0}.$ Then

$$\widehat{1}_P(m',0) = N^{-\frac{d}{2}} \sum_{y \in \mathbb{Z}_N^{d-1}} \chi(-y \cdot m) = 0.$$

• If $m_d \neq 0$, let's consider the case $m' \equiv 0$. We obtain

$$N^{-\frac{d}{2}}\sum_{y\in\mathbb{Z}_N^{d-1}}\chi(-m_d||y||),$$

which is a product of sums of the form

Paraboloid (continued)

٠

• Suppose that $m_d=0$ and $m'\neq {f 0}.$ Then

$$\widehat{1}_P(m',0) = N^{-rac{d}{2}} \sum_{y \in \mathbb{Z}_N^{d-1}} \chi(-y \cdot m) = 0.$$

• If $m_d \neq 0$, let's consider the case $m' \equiv 0$. We obtain

$$N^{-\frac{d}{2}}\sum_{y\in\mathbb{Z}_N^{d-1}}\chi(-m_d||y||),$$

which is a product of sums of the form

$$g(a) = \sum_{t \in \mathbb{Z}_N} \chi(at^2), ext{ the classical Gauss sum.}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 8/108

Gauss sum estimation

• Suppose that N is an odd prime and $a \neq 0$. We have

$$|g(a)|^2 = \sum_{t,s} \chi(a(t^2 - s^2)) = \sum_{t,s} \chi(ats)$$

ほ ト イ ヨ ト

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 9/108

Gauss sum estimation

• Suppose that N is an odd prime and $a \neq 0$. We have

$$|g(a)|^2 = \sum_{t,s} \chi(a(t^2 - s^2)) = \sum_{t,s} \chi(ats)$$

$$=\sum_{u}\sum_{ts=u}\chi(au)=\sum_{u}\chi(au)n(u),$$

where

٠

$$n(u) = |\{(t,s) : ts = u\}|.$$

.∃ →

Gauss sum estimation

• Suppose that N is an odd prime and $a \neq 0$. We have

$$|g(a)|^2 = \sum_{t,s} \chi(a(t^2 - s^2)) = \sum_{t,s} \chi(ats)$$

$$=\sum_{u}\sum_{ts=u}\chi(au)=\sum_{u}\chi(au)n(u),$$

where

$$n(u) = |\{(t,s) : ts = u\}|.$$

• It is not difficult to see that n(0) = 2N - 1 and N - 1 otherwise, so

$$|g(a)|^2 = 2N - 1 + (N - 1) \sum_{u
eq 0} \chi(au)$$

$$= N + (N-1)\sum_{u}\chi(au) = N.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 9/108

Back to the paraboloid

• It follows that if $a \neq 0$,

$$|g(a)|=\sqrt{N}.$$

Going back to the paraboloid and N is an odd prime, we see that if $m' = \mathbf{0}, m_d \neq 0$,

$$|\widehat{1}_{M}(0,\ldots,0,m_{d})| = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d-1}} \chi(m_{d}||y||)$$

 $= N^{-\frac{d}{2}} (\sqrt{N})^{d-1} = N^{-\frac{1}{2}}.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 10/108

Back to the paraboloid

• It follows that if $a \neq 0$,

$$|g(a)| = \sqrt{N}.$$

Going back to the paraboloid and N is an odd prime, we see that if $m' = \mathbf{0}, m_d \neq 0$,

$$|\widehat{1}_{M}(0,\ldots,0,m_{d})| = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d-1}} \chi(m_{d}||y||)$$

$$= N^{-\frac{d}{2}} (\sqrt{N})^{d-1} = N^{-\frac{1}{2}}.$$

• If $m_d \neq 0$ and $m' \neq (0, ..., 0)$, we can complete the square and obtain the same bound, i.e

$$|\widehat{1}_P(m)|=N^{-\frac{1}{2}}.$$

• Let

$$S = \{x \in \mathbb{Z}_N^d : x_1^2 + x_2^2 + \dots + x_d^2 = 1\}, N \text{ odd prime.}$$

∃▶ ∢ ∃▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 11/108

Let

$$S = \{x \in \mathbb{Z}_N^d : x_1^2 + x_2^2 + \dots + x_d^2 = 1\}, N \text{ odd prime.}$$

• Suppose that $m \neq \mathbf{0}$. We have

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}} \sum_{x} \chi(-x \cdot m) N^{-1} \sum_{s \neq 0} \chi(s(||x|| - 1)).$$

Let

$$S = \{x \in \mathbb{Z}_N^d : x_1^2 + x_2^2 + \dots + x_d^2 = 1\}, N \text{ odd prime.}$$

• Suppose that $m \neq \mathbf{0}$. We have

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}} \sum_{x} \chi(-x \cdot m) N^{-1} \sum_{s \neq 0} \chi(s(||x|| - 1)).$$

Since

$$sx_j^2 - x_jm_j = s(x_j^2 - x_jm_j/s) = s(x_j - m_j/2s)^2 - m_j^2/4s^2),$$

we can change variables above and arrive at

Let

$$S = \{x \in \mathbb{Z}_N^d : x_1^2 + x_2^2 + \dots + x_d^2 = 1\}, N \text{ odd prime.}$$

• Suppose that $m \neq \mathbf{0}$. We have

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}} \sum_{x} \chi(-x \cdot m) N^{-1} \sum_{s \neq 0} \chi(s(||x|| - 1)).$$

Since

$$sx_j^2 - x_jm_j = s(x_j^2 - x_jm_j/s) = s(x_j - m_j/2s)^2 - m_j^2/4s^2),$$

we can change variables above and arrive at

$$N^{-\frac{d}{2}-1} \sum_{s \neq 0} \sum_{x \in \mathbb{Z}_N^d} \chi(s||x||) \chi(-s) \chi(-||m||/4s).$$

The sphere (continued)

• Using the Gauss sum identity we obtain a few minutes ago, the expression above equals

$$N^{-1}\sum_{s\neq 0}\gamma^d(s)\chi(-s-||m||/4s),$$

where

 $|\gamma(s)|=1.$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 12/108

The sphere (continued)

• Using the Gauss sum identity we obtain a few minutes ago, the expression above equals

$$N^{-1}\sum_{s\neq 0}\gamma^d(s)\chi(-s-||m||/4s),$$

where

$$|\gamma(s)|=1.$$

• The "innocent" looking expression above is a twisted Kloosterman sum. Its modulus is bounded by $2\sqrt{N}$. The proof of this fact is very sophisticated and uses highly non-trivial number theory.

The sphere (continued)

• Using the Gauss sum identity we obtain a few minutes ago, the expression above equals

$$N^{-1}\sum_{s\neq 0}\gamma^d(s)\chi(-s-||m||/4s),$$

where

$$|\gamma(s)|=1.$$

- The "innocent" looking expression above is a twisted Kloosterman sum. Its modulus is bounded by $2\sqrt{N}$. The proof of this fact is very sophisticated and uses highly non-trivial number theory.
- In conclusion, if $m \neq 0$,

$$|\widehat{1}_{\mathcal{S}}(m)| \leq CN^{-\frac{1}{2}}.$$

The square root law

• In both the case of the sphere and the paraboloid, we established an estimate of the form

 $|\widehat{1}_{\mathcal{S}}(m)| \leq CN^{-rac{d}{2}}|\mathcal{S}|^{rac{1}{2}}, \ m \neq \mathbf{0}, \ N \ ext{odd} \ ext{prime}.$

The square root law

• In both the case of the sphere and the paraboloid, we established an estimate of the form

$$|\widehat{1}_{\mathcal{S}}(m)| \leq CN^{-rac{d}{2}}|\mathcal{S}|^{rac{1}{2}}, \ m
eq \mathbf{0}, \ N \ ext{odd} \ ext{prime}.$$

• This estimate is an example of the so-called "square root law" for exponential sums. A better estimate (up to a constant) is not possible because of Plancherel.

The square root law

• In both the case of the sphere and the paraboloid, we established an estimate of the form

$$|\widehat{1}_{\mathcal{S}}(m)| \leq CN^{-rac{d}{2}}|\mathcal{S}|^{rac{1}{2}}, \ m
eq \mathbf{0}, \ N \ ext{odd} \ ext{prime}.$$

- This estimate is an example of the so-called "square root law" for exponential sums. A better estimate (up to a constant) is not possible because of Plancherel.
- An interesting situation arises if we ask whether such estimate can ever hold in a non-field setting. The is where we now (briefly) turn our attention.

Theorem

(A.I., B. Murphy and J. Pakianathan (2014)) Let R_i be a sequence of finite rings (not necessarily commutative) such that $|R_i|$ is odd and $|R_i| \rightarrow \infty$ as $i \rightarrow \infty$. Suppose that

$$\left|\sum_{uv=1}\chi(u,v)\right|\leq C|R_i^*|^{\frac{1}{2}},$$

where χ is a non-trivial character on R_i , and R_i^* is the ring of units of R_i .

Then R_is are eventually finite fields.
Theorem

(N. Kingsbury (2024)) Let $f(X_1, \ldots, X_{d-1})$ be a polynomial in $Z[X_1, \ldots, X_{d-1}]$. Let $V_f(R)$ denote the solution set to

$$X_d = f(X_1, \ldots, X_{d-1})$$

over a finite ring R.

Suppose a sequence of finite rings $\{R_i\}$ has the property that Fourier transforms over $V(R_i)$ satisfy square root cancellation (for some fixed constant).

Then all but finitely many of the rings are fields or matrix rings of small dimension relative to d.

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

∃ >

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 16/108

Λ

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

• We have
$$\sum_{m} |\widehat{1}_{\mathcal{S}}(m)|^{4} =$$

= $N^{-2d} \sum_{x,y,x',y} \sum_{m} \chi(m \cdot (x + y - x' - y')) \mathbb{1}_{\mathcal{S}}(x) \mathbb{1}_{\mathcal{S}}(y) \mathbb{1}_{\mathcal{S}}(x') \mathbb{1}_{\mathcal{S}}(y')$

∃▶ ∢ ∃▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 16/108

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

• We have
$$\sum_{m} |\widehat{1}_{S}(m)|^{4} =$$

= $N^{-2d} \sum_{x,y,x',y} \sum_{m} \chi(m \cdot (x + y - x' - y')) \mathbb{1}_{S}(x) \mathbb{1}_{S}(y) \mathbb{1}_{S}(x') \mathbb{1}_{S}(y')$

 $= N^{-d}|\{(x, y, x', y') \in S^4 : x + y = x' + y'\}| = N^{-d}\Lambda(S), \text{ i.e.}$

化原本 化原本

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

• We have
$$\sum_{m} |\widehat{1}_{S}(m)|^{4} =$$

$$= N^{-2d} \sum_{x,y,x',y} \sum_{m} \chi(m \cdot (x + y - x' - y')) 1_{S}(x) 1_{S}(y) 1_{S}(x') 1_{S}(y')$$
•

$$= N^{-d} |\{(x, y, x', y') \in S^{4} : x + y = x' + y'\}| = N^{-d} \Lambda(S), \text{ i.e.}$$
•

$$\Lambda(S) = |\{(x, y, x', y') \in S^{4} : x + y = x' + y'\}| = N^{d} \sum_{m} |\widehat{1}_{S}(m)|^{4}.$$

From Fourier decay to additive energy (continued)

• By assumption, the right-hand side is bounded by

$$N^d \cdot C_{Fourier}^2 \cdot N^{-d} \cdot |S| \cdot \sum_m |\widehat{1}_S(m)|^2.$$

イヨト イヨト

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 17/108

From Fourier decay to additive energy (continued)

• By assumption, the right-hand side is bounded by

$$N^d \cdot C_{Fourier}^2 \cdot N^{-d} \cdot |S| \cdot \sum_m |\widehat{1}_S(m)|^2.$$

• By Plancherel, this expression equals

$$C_{Fourier}^2 \cdot |S|^2$$
,

from which we conclude that

$$\frac{\Lambda(S)}{|S|^2} \le C_{Fourier}^2.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 17/108

• Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in *S* ⊂ Z^d_N are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in *S* ⊂ Z^d_N are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

$$= N^{-\frac{d}{2}} \sum_{m \notin S} \chi(x \cdot m) \widehat{1}_E(m) + N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{1}_E(m)$$

An elementary point of view: direct estimation

٠

- ∢ ∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 19/108

An elementary point of view: direct estimation

$$= I(x) + II(x).$$

• By the triangle inequality,

۲

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 19/108

An elementary point of view: direct estimation

$$= I(x) + II(x).$$

• By the triangle inequality,

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

• Since we know nothing about *S*, the best we can do is assume that the quantity above is small.

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot|S|<\frac{N^d}{2}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 20 / 108

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot|S|<\frac{N^d}{2}.$$

• But what happens if we consider general signals?

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 21/108

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d.$

• Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d.$

- Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.
- If f cannot be recovered uniquely, then there exists a signal $g : \mathbb{Z}_N^d \to \mathbb{C}$ such that g also has |supp(f)| non-zero entries,

 $\widehat{f}(m) = \widehat{g}(m)$ for $m \notin S$,

and f is not identically equal to g.

Uncertainty Principle \rightarrow Unique Recovery

 Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.

Uncertainty Principle \rightarrow Unique Recovery

- Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.
- By the Uncertainty Principle, we must have

$$|supp(f)| \cdot |S| \geq \frac{N^d}{2}.$$

Uncertainty Principle \rightarrow Unique Recovery

- Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.
- By the Uncertainty Principle, we must have

$$|supp(f)| \cdot |S| \geq \frac{N^d}{2}.$$

• Therefore, if we assume that

$$|supp(f)| \cdot |S| < \frac{N^d}{2},$$

we must have h = 0, and hence the recovery is *unique*.

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 23/108

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

• Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} \mathbf{1}_{\mathcal{S}^{\perp}}(m).$$

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} \mathbf{1}_{\mathcal{S}^{\perp}}(m).$$

• Since $|S| \cdot |S^{\perp}| = N^d$, the classical uncertainty principle is sharp.

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} 1_{\mathcal{S}^{\perp}}(m).$$

• Since $|S| \cdot |S^{\perp}| = N^d$, the classical uncertainty principle is sharp.

• We are going to see that in the presence of non-trivial restriction estimates, we can do much better. We are also going to see that non-trivial restriction estimates "typically" hold.

Proof of the classical uncertainty principle

• We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

∋ ► < ∃ ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 24/108

Proof of the classical uncertainty principle

We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

• By the triangle inequality,

$$|h(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot N^{-rac{d}{2}} \cdot \sum_{x \in \mathbb{Z}_N^d} |h(x)|.$$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 24/108

Proof of the classical uncertainty principle

• We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

• By the triangle inequality,

$$|h(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot N^{-rac{d}{2}} \cdot \sum_{x \in \mathbb{Z}_N^d} |h(x)|.$$

• Summing both sides over $x \in E$ and cancelling the L^1 norms of h on both sides, we obtain

 $|E| \cdot |S| \ge N^d.$

Additive energy uncertainty principle

• The following result was recently established by K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack.

Additive energy uncertainty principle

• The following result was recently established by K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack.

Definition (Additive energy)

Let $A \subset \mathbb{Z}_N^d$. The **additive energy** of A, denoted by $\Lambda(A)$, is defined as follows:

$$\Lambda(A) = \left| \left\{ (x_1, x_2, x_3, x_4) \in A^4 : x_1 + x_2 = x_3 + x_4 \right\} \right|.$$

Additive energy uncertainty principle

• The following result was recently established by K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack.

Definition (Additive energy)

Let $A \subset \mathbb{Z}_N^d$. The **additive energy** of A, denoted by $\Lambda(A)$, is defined as follows:

$$\Lambda(A) = \left| \left\{ (x_1, x_2, x_3, x_4) \in A^4 : x_1 + x_2 = x_3 + x_4 \right\} \right|.$$

۲

 This quantity measures the extent to which a given set is arithmetically closed.

Theorem (Additive Energy Uncertainty Principle)

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support in E and $supp(\widehat{f}) = S$. Then for any $\alpha \in [0, 1]$,

$$\left(|E|\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\right)^{\alpha}\cdot \left(|S|\max_{F\subset E}\frac{\Lambda(F)}{|F|^2}\right)^{1-\alpha}\geq N^d$$

٠

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 26/108

Theorem (Additive Energy Uncertainty Principle)

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support in E and $supp(\widehat{f}) = S$. Then for any $\alpha \in [0, 1]$,

$$\left(|E|\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\right)^{\alpha}\cdot \left(|S|\max_{F\subset E}\frac{\Lambda(F)}{|F|^2}\right)^{1-\alpha}\geq N^d.$$

۲

Since |Λ(U)| ≤ |U|³, the results above recover the classical uncertainty principle.

Theorem (Additive Energy Uncertainty Principle)

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support in E and $supp(\widehat{f}) = S$. Then for any $\alpha \in [0, 1]$,

$$\left(\left|E\right|\max_{U\subset S}\frac{\Lambda(U)}{\left|U\right|^{2}}\right)^{lpha}\cdot\left(\left|S\right|\max_{F\subset E}\frac{\Lambda(F)}{\left|F\right|^{2}}\right)^{1-lpha}\geq N^{d}.$$

۲

- Since |Λ(U)| ≤ |U|³, the results above recover the classical uncertainty principle.
- If |Λ(F)| = o(|U|³) for all F ⊂ E, and/or if |Λ(U)| = o(|U|³) for all U ⊂ Σ, which holds in the generic case, we get an improved uncertainty principle.
• Suppose that N is an odd prime and d = 2. Let

$$S = \left\{ m \in \mathbb{Z}^2_N : m_1^2 + m_2^2 = 1
ight\}.$$

.∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 27 / 108

• Suppose that N is an odd prime and d = 2. Let

$$S = \left\{ m \in \mathbb{Z}_N^2 : m_1^2 + m_2^2 = 1
ight\}.$$

• It is not difficult to check that if $m + l = m' + l', m, m', l, l' \in S$, then m = m', l = l'; m = l', l = m'; or m = -l, m' = -l'. This implies that

$$\max_{U\subset S}\frac{\Lambda(U)}{\left|U\right|^{2}}\leq 3.$$

• Suppose that N is an odd prime and d = 2. Let

$$S = \left\{ m \in \mathbb{Z}^2_{N} : m_1^2 + m_2^2 = 1
ight\}.$$

• It is not difficult to check that if $m + l = m' + l', m, m', l, l' \in S$, then m = m', l = l'; m = l', l = m'; or m = -l, m' = -l'. This implies that

$$\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\leq 3.$$

• It follows that if f is supported in E and \hat{f} is supported in S, then the additive energy uncertainty principle tells us that $|E| \ge \frac{N^2}{3}$.

• Suppose that N is an odd prime and d = 2. Let

$${\cal S} = \left\{ m \in \mathbb{Z}^2_{{\cal N}} : m_1^2 + m_2^2 = 1
ight\}.$$

• It is not difficult to check that if $m + l = m' + l', m, m', l, l' \in S$, then m = m', l = l'; m = l', l = m'; or m = -l, m' = -l'. This implies that

$$\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\leq 3.$$

- It follows that if f is supported in E and \hat{f} is supported in S, then the additive energy uncertainty principle tells us that $|E| \ge \frac{N^2}{3}$.
- Since *N* is prime, there are more algebraic ways of addressing uncertainty in this setting as we shall eventually see.

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \le p \le q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-\frac{d}{2}}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}.$$

米 原 トーイ 原 ト

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \le p \le q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-\frac{d}{2}}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}$$

• We shall need the following "universal" restriction theorem.

Theorem

(A.I. and A. Mayeli) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and let S be a subset of \mathbb{Z}_N^d . Then

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset S}\frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in\mathbb{Z}_{N}^{d}}\left|f(x)\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 28 / 108

From restriction directly to uncertainty

• Before proving the universal restriction theorem, we are going to develop a simple mechanism for going directly from restriction to uncertainty, where the more non-trivial the restriction estimate becomes, the better uncertainty principle we obtain. More eleborate versions of this approach will be developed a bit later.

From restriction directly to uncertainty

• Before proving the universal restriction theorem, we are going to develop a simple mechanism for going directly from restriction to uncertainty, where the more non-trivial the restriction estimate becomes, the better uncertainty principle we obtain. More eleborate versions of this approach will be developed a bit later.

Theorem (Uncertainty Principle via Restriction Theory – A.I. & A.Mayeli, 2023)

Suppose that $f, \hat{f} : \mathbb{Z}_N^d \to \mathbb{C}$, with f supported in $E \subset \mathbb{Z}_N^d$, and \hat{f} supported in $S \subset \mathbb{Z}_N^d$. Suppose S satisfies the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}}.$$

٠

Proof of Uncertainty via Restriction

• Suppose that f is supported in a set E, and \hat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

Proof of Uncertainty via Restriction

• Suppose that f is supported in a set E, and \hat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

• By Holder's inequality,

$$|f(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot \left(rac{1}{|S|} \sum_{m \in S} \left|\widehat{f}(m)\right|^q\right)^{rac{1}{q}}.$$

Proof of Uncertainty via Restriction

• Suppose that f is supported in a set E, and \hat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

By Holder's inequality,

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S| \cdot \left(\frac{1}{|S|} \sum_{m \in S} |\widehat{f}(m)|^q\right)^{\frac{1}{q}}.$$

• By the restriction bound assumption, this expression is bounded by

$$|S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^p\right)^{\frac{1}{p}},$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 30/108

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 31/108

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

• Putting everything together, we see that

$$|f(x)| \leq |S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 31/108

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

• Putting everything together, we see that

$$|f(x)| \leq |S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Raising both sides to the power of p, summing over E, and dividing both sides of the resulting inequality by ∑_{x∈E} |f(x)|^p, we obtain

$$|S|^p \cdot |E| \cdot C^p_{p,q} \ge N^{dp}.$$

Proof of Uncertainty Principle via Restriction I (finale)

• or, equivalently,

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}},$$

-∢ ∃ ▶

as desired.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 32 / 108

Proof of Uncertainty Principle via Restriction I (finale)

or, equivalently,

$$|E|^{\frac{1}{p}}\cdot|S|\geq \frac{N^d}{C_{p,q}},$$

as desired.

• This completes the proof of the Uncertainty Principle via Restriction Theory.

Proof of the universal restriction theorem

• We have

$$\sum_{m\in S} |\widehat{f}(m)|^2 = \sum_m \mathbb{1}_S(m)\widehat{f}(m)g(m),$$

where

 $g(m)=\overline{1_S\widehat{f}(m)}.$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 33 / 108

Proof of the universal restriction theorem

We have

$$\sum_{m\in S} |\widehat{f}(m)|^2 = \sum_m \mathbb{1}_S(m)\widehat{f}(m)g(m),$$

where

$$g(m) = \overline{1_S \widehat{f}(m)}.$$

• The expression above equals

$$\sum_{x} f(x)\widehat{\mathbf{1}_{S}g}(x) \leq ||f||_{L^{\frac{4}{3}}(\mathbb{Z}_{N}^{d})} \cdot \left(\sum_{x \in \mathbb{Z}_{N}^{d}} |\widehat{\mathbf{1}_{S}g}(x)|^{4}\right)^{\frac{1}{4}}.$$

1

등 이 동 이

э

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 33 / 108

• We have

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 34/108

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 34/108

We have $\sum |\widehat{\mathbf{1}_{S}g}(x)|^4$ $x \in \mathbb{Z}_{N}^{d}$ ۲ $= N^{-2d} \sum \overline{g(m)g(l)}g(m')g(l') \sum \chi((m+l-m'-l')\cdot x)$ $m.l.\overline{m'}.l' \in S$ $= N^{-d}$ $\sum \overline{g(m)g(l)}g(m')g(l')$ $m+l=m'+l'\cdot m \cdot l \cdot m' \cdot l' \in S$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 34/108

• The quantity above is bounded by

$$N^{-d} \max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|\left|g\right|\right|_{L^2(\mathbb{Z}_N^d)}^4.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 35 / 108

• The quantity above is bounded by

$$N^{-d} \max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|\left|g\right|\right|_{L^2(\mathbb{Z}_N^d)}^4.$$

• This is clear if g is an indicator function, and it holds in general by writing a function as a linear combination of indicator functions.

• The quantity above is bounded by

$$N^{-d} \max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|\left|g\right|\right|_{L^2(\mathbb{Z}_N^d)}^4.$$

- This is clear if g is an indicator function, and it holds in general by writing a function as a linear combination of indicator functions.
- It follows that

$$\left(\sum_{x\in\mathbb{Z}_N^d}\left|\widehat{1_{S}g}(x)\right|^4\right)^{\frac{1}{4}} \leq N^{-\frac{d}{4}}\cdot\left(\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}}\cdot||g||_{L^2(\mathbb{Z}_N^d)}$$

• Putting everything together, we see that

$$\left(\frac{1}{|S|}\sum_{m\in S} |\widehat{f}(m)|^{2}\right)^{\frac{1}{2}} \leq N^{-\frac{d}{4}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot |S|^{-\frac{1}{2}} \cdot ||f||_{L^{\frac{4}{3}}(\mathbb{Z}_{N}^{d})}$$

• Putting everything together, we see that

۵

$$\left(\frac{1}{|S|}\sum_{m\in S} |\widehat{f}(m)|^{2}\right)^{\frac{1}{2}} \leq N^{-\frac{d}{4}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot |S|^{-\frac{1}{2}} \cdot ||f||_{L^{\frac{4}{3}}(\mathbb{Z}_{N}^{d})}$$

$$=\left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}}\cdot\left(\max_{U\subset S}\frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}}\cdot N^{-\frac{d}{2}}\cdot\left(\sum_{x\in\mathbb{Z}_N^d}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 36 / 108

• Putting everything together, we see that

$$\left(\frac{1}{|S|}\sum_{m\in S} |\widehat{f}(m)|^2\right)^{\frac{1}{2}} \le N^{-\frac{d}{4}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot |S|^{-\frac{1}{2}} \cdot ||f||_{L^{\frac{4}{3}}(\mathbb{Z}_N^d)}$$

$$= \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}$$

• This completes the proof of the universal restriction theorem.

Proof of the additive energy uncertainty principle

• By the universal restriction theorem,

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 37 / 108

Proof of the additive energy uncertainty principle

• By the universal restriction theorem,

۲

$$\left(\frac{1}{|S|}\sum_{m\in S} \left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in E} |f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 37 / 108

Proof of the additive energy uncertainty principle

• By the universal restriction theorem,

$$\left(\frac{1}{|S|}\sum_{m\in S} \left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}}$$
$$\leq \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in E} |f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

• It follows that

۲

$$\left(\sum_{m\in S} \left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq |S|^{\frac{1}{2}} \cdot \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{\substack{x\in E\\ x\in E \\ x\in B \\ x\in B$$

1

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 37 / 108

• Since \widehat{f} is supported in S, we can apply Plancherel and obtain

$$\left(\sum_{x\in E} |f(x)|^2\right)^{\frac{1}{2}}$$

$$\leq |S|^{\frac{1}{2}} \cdot \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset\Sigma} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in E} |f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

• Since \widehat{f} is supported in S, we can apply Plancherel and obtain

$$\left(\sum_{x\in E} |f(x)|^2\right)^{\frac{1}{2}}$$
$$\leq |S|^{\frac{1}{2}} \cdot \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset\Sigma} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in E} |f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

1

• Applying Hölder's inequality, we obtain

$$\left(\sum_{x\in E}|f(x)|^2\right)^{\frac{1}{2}}$$

$$\leq |S|^{\frac{1}{2}} \cdot \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot |E|^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^{2}\right)^{\frac{1}{2}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 38 / 108

It follows that

$$N^{\frac{d}{4}} \leq \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot |E|^{\frac{1}{4}},$$

and we conclude that

$$N^d \leq |E| \cdot \max_{U \subset S} \frac{\Lambda(U)}{|U|^2}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 39 / 108

It follows that

$$N^{\frac{d}{4}} \leq \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}} \cdot |E|^{\frac{1}{4}},$$

and we conclude that

$$N^d \leq |E| \cdot \max_{U \subset S} \frac{\Lambda(U)}{|U|^2}.$$

• Exactly the same argument with f replaced by \hat{f} and S replaced by E yields

$$N^d \leq |S| \cdot \max_{F \subset E} \frac{\Lambda(F)}{|F|^2}.$$

Another version of the additive energy uncertainty principle

• It would be very convenient to work out a version of the additive energy uncertainty principle purely in terms of the additive energy of E = supp(f) and $S = supp(\hat{f})$. This is where we not turn our attention.

Another version of the additive energy uncertainty principle

• It would be very convenient to work out a version of the additive energy uncertainty principle purely in terms of the additive energy of E = supp(f) and $S = supp(\hat{f})$. This is where we not turn our attention.

Theorem

(K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with supp(f) = E and $supp(\widehat{f}) = S$. Then for any $\alpha \in [0, 1]$,

$$\mathsf{N}^d \ \leq \Lambda^{rac{lpha}{3}}(E) \Lambda^{rac{1-lpha}{3}}(S) |E|^{1-lpha} |S|^lpha.$$
• We have

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 41/108

We have

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

It follows that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot \left(\sum_{m \in \mathbb{Z}_N^d} |\widehat{f}(m)|^4\right)^{\frac{1}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 41/108

• We have

$$\sum_{m\in S} |\widehat{f}(m)|^4$$

$$= N^{-2d} \sum_{m \in \mathbb{Z}_N^d \times, y, x', y' \in E} \chi((x+y-x'-y') \cdot m)\overline{f(x)f(y)}f(x')f(y')$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 42/108

• We have

۵

$$\sum_{m \in S} |\widehat{f}(m)|^4$$

= $N^{-2d} \sum_{m \in \mathbb{Z}_N^d} \sum_{x,y,x',y' \in E} \chi((x+y-x'-y')\cdot m)\overline{f(x)f(y)}f(x')f(y')$

$$= N^{-d} \sum_{x+y=x'+y'; x, y, x', y' \in E} \overline{f(x)f(y)} f(x') f(y')$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 42/108

• We have

۵

۵

$$\sum_{m \in S} |\widehat{f}(m)|^4$$
$$= N^{-2d} \sum_{m \in \mathbb{Z}_N^d} \sum_{x, y, x', y' \in E} \chi((x + y - x' - y') \cdot m) \overline{f(x)f(y)} f(x') f(y')$$

$$= N^{-d} \sum_{x+y=x'+y';x,y,x',y'\in E} \overline{f(x)f(y)}f(x')f(y')$$

$$\leq N^{-d} \cdot \Lambda(E) \cdot ||f||^4_{L^{\infty}(E)}$$

4 E 🕨 4 E 🕨

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/108

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

• Taking the maximum over $x \in E$ and cancelling the $L^{\infty}(E)$ norms, we obtain

 $N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/108

Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

Taking the maximum over x ∈ E and cancelling the L[∞](E) norms, we obtain

$$N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$$

• Equivalently,

 $N^d \leq \Lambda^{\frac{1}{3}}(E) \cdot |S|.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/108

Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

Taking the maximum over x ∈ E and cancelling the L[∞](E) norms, we obtain

$$N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$$

• Equivalently,

$$N^d \leq \Lambda^{\frac{1}{3}}(E) \cdot |S|.$$

• Reversing the roles of E and S, we obtain

 $N^d \leq \Lambda^{\frac{1}{3}}(S) \cdot |E|$, which completes the proof.

Bourgain's Λ_q theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, ϕ_1, \ldots, ϕ_n are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}$, q > 2,

$$\left\| \left\| \sum_{i \in S} a_i \phi_i \right\|_{L^q(G)} \leq C(q) \cdot \left(\sum_{i \in S} |a_i|^2 \right)^{\frac{1}{2}},\right\|$$

where C(q) depends only on q.

Bourgain's Λ_q theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, ϕ_1, \ldots, ϕ_n are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}$, q > 2,

$$\left\| \left\| \sum_{i \in S} a_i \phi_i \right\| \right\|_{L^q(G)} \leq C(q) \cdot \left(\sum_{i \in S} |a_i|^2 \right)^{\frac{1}{2}},$$

where C(q) depends only on q.

• As we shall see, this result has a beautiful built-in uncertainty principle.

Bourgain's Λ_q theorem

• It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if $f : \mathbb{Z}_N^d \to \mathbb{C}$ and \hat{f} is supported in S, then for a "generic" set of size $\approx N^{\frac{2d}{q}}$, $2 < q < \infty$,

$$\left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q
ight)^rac{1}{q}\leq \mathcal{K}_q(S) \left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2
ight)^rac{1}{2},$$

with $K_q(S)$ independent of N.

Bourgain's Λ_q theorem

It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if f : Z^d_N → C and f is supported in S, then for a "generic" set of size ≈ N^{2d/q}, 2 < q < ∞,

$$\left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q
ight)^rac{1}{q}\leq \mathcal{K}_q(S) \left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2
ight)^rac{1}{2},$$

with $K_q(S)$ independent of N.

 It is not difficult to see that this inequality implies that the support of *f* must be a positive proportion of Z^d_N.

• Suppose that S is generic, as in Bourgain's theorem.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 46 / 108

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \hat{f} is supported in S. Bourgain's theorem implies that

• Suppose that S is generic, as in Bourgain's theorem.

• Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \hat{f} is supported in S. Bourgain's theorem implies that

$$N^{-\frac{d}{q}} \cdot |E|^{\frac{1}{q}} \left(\frac{1}{|E|} \sum_{x \in E} |f(x)|^{q} \right)^{\frac{1}{q}}$$
$$\leq K_{q}(S) N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} \left(\frac{1}{|E|} \sum_{x \in E} |f(x)|^{2} \right)^{\frac{1}{2}}.$$

• It follows that

$$|E| \geq \frac{N^d}{\left(K_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}.$$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 47/108

It follows that

$$|E| \geq \frac{N^d}{\left(\mathcal{K}_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}$$

• It follows that if \hat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, then f is supported on a positive proportion of \mathbb{Z}_N^d .

It follows that

$$|E| \geq \frac{N^d}{\left(\mathcal{K}_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}$$

• It follows that if \hat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, then f is supported on a positive proportion of \mathbb{Z}_N^d .

• We conclude that if we send the Fourier transform of a signal f supported on a set of size $o(N^d)$, and the frequencies in $S \subset \mathbb{Z}_N^d$ satisfying a Λ_q , q > 2, inequality are missing, we can recover f exactly and uniquely with very high probability.

• Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.

4 E 🕨 4 E 🕨

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 48 / 108

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

• We may discuss the continuous case in more detail later in these lectures.

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

- We may discuss the continuous case in more detail later in these lectures.
- For the moment we immerse ourselves back in the world of finite signals.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 48 / 108

Annihilating pairs: Ghobber and Jaming

• Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Ghobber and Jaming proved in 2011 that if $E, S \subset \mathbb{Z}_N^d$, $|E| \cdot |S| < N^d$, then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right).$$

Annihilating pairs: Ghobber and Jaming

• Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Ghobber and Jaming proved in 2011 that if $E, S \subset \mathbb{Z}_N^d$, $|E| \cdot |S| < N^d$, then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right).$$

• Observe that this result easily implies the classical uncertainty principle since if f is supported in E, \hat{f} is supported in S, and

$$|E|\cdot|S| < N^d,$$

then the right hand side of the inequality above is 0. Hence the left hand side is also 0 and the uncertainty principle is established.

Proof of the Ghobber-Jaming result

• We have

$$\begin{aligned} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{aligned}$$

4 E 🕨 4 E 🕨

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 50/108

Proof of the Ghobber-Jaming result

• We have

$$\begin{aligned} |\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{aligned}$$

• On the other hand,

$$||\widehat{\mathbf{1}_E f}||_{L^2(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^2(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^2(S)}$$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 50 / 108

Proof of the Ghobber-Jaming result

We have

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{split}$$

On the other hand,

$$||\widehat{\mathbf{1}_E f}||_{L^2(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^2(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^2(S)}$$

 $\geq ||f||_{L^{2}(E)} \left(1 - N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}}\right).$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 50 / 108

• We are almost ready to drive for the finish line. By the triangle inequality,

 $||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$

• We are almost ready to drive for the finish line. By the triangle inequality,

$$||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$$

• $\leq ||\widehat{1_E f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{Nd}}} + ||f||_{L^2(E^c)}$

• We are almost ready to drive for the finish line. By the triangle inequality,

$$||f||_{L^2(\mathbb{Z}_N^d)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$$

•

$$\leq ||\widehat{1_E f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^d}}} + ||f||_{L^2(E^c)}$$
•

$$= ||\widehat{f} - \widehat{1_{E^c} f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^d}}} + ||f||_{L^2(E^c)}$$

۲

$$\leq \left(||\widehat{f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})} \right) \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}} + ||f||_{L^{2}(E^{c})}$$

∃▶ ∢ ∃▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 52/108

$$\leq \left(||\widehat{f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})} \right) \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}} + ||f||_{L^{2}(E^{c})}$$

$$\left(1+\frac{1}{1-\sqrt{\frac{|E||S|}{N^d}}}\right)\cdot\left(||f||_{L^2(E^c)}+||\widehat{f}||_{L^2(S^c)}\right),$$

-∢ ∃ ▶

and the proof is complete.

۲

۲

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 52 / 108

Annihilating pairs and structure of sets

• Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.

Annihilating pairs and structure of sets

- Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.
- The following is a recent result due to A.I., P. Jaming and A. Mayeli. Suppose that a (p,q) Fourier restriction estimate holds for $S \subset \mathbb{Z}_N^d$, $1 \le p \le 2 \le q$, with norm $C_{p,q}$. Then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{C_{\rho,q}^{2}|E|^{\frac{2-\rho}{p}}|S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

Annihilating pairs and structure of sets

- Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.
- The following is a recent result due to A.I., P. Jaming and A. Mayeli. Suppose that a (p,q) Fourier restriction estimate holds for $S \subset \mathbb{Z}_N^d$, $1 \le p \le 2 \le q$, with norm $C_{p,q}$. Then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{C_{p,q}^{2}|E|^{\frac{2-p}{p}}|S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

provided that

$$|E|^{\frac{2-p}{p}}|S|<\frac{N^d}{C_{p,q}^2}.$$
If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for S,

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{|E|^{\frac{1}{2} - \frac{1}{q'}}}{1 - \left(\frac{|S||E|^{\frac{(q'-p)q}{q'p}}C_{p,q}^{q}}{N^{d}}\right)^{\frac{1}{q}}}\right) \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

米 原 トーイ 原 ト

э

 If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for S,

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{|E|^{\frac{1}{2} - \frac{1}{q'}}}{1 - \left(\frac{|S||E|^{\frac{(q'-p)q}{q'p}}C_{p,q}^{q}}{N^{d}}\right)^{\frac{1}{q}}}\right) \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

provided that

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot|S|<\frac{N^d}{C^q_{p,q}}.$$

くほう くほう

э

Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction assumption,

$$\begin{split} ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} &= |S|^{\frac{1}{2}} ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(\mu_{S})} \leq |S|^{\frac{1}{2}} ||\widehat{\mathbf{1}_{E}f}||_{L^{q}(\mu_{S})} \\ &\leq |S|^{\frac{1}{2}} \cdot C_{p,q} N^{-\frac{d}{2}} ||f||_{L^{p}(E)} \end{split}$$

不足下 不足下

э

by assumption.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 55 / 108

Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction assumption,

$$\begin{split} ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} &= |S|^{\frac{1}{2}} ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(\mu_{S})} \leq |S|^{\frac{1}{2}} ||\widehat{\mathbf{1}_{E}f}||_{L^{q}(\mu_{S})} \\ &\leq |S|^{\frac{1}{2}} \cdot C_{p,q} N^{-\frac{d}{2}} ||f||_{L^{p}(E)} \end{split}$$

by assumption.

• By Holder's inequality, this quantity is bounded by

$$C_{p,q}|S|^{\frac{1}{2}}N^{-\frac{d}{2}}|E|^{\frac{2-p}{2p}}||f||_{L^{2}(E)} = \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}||f||_{L^{2}(E)}.$$

医原子 医原子

э

• On the other hand,

$$\begin{split} |\widehat{\mathbf{1}_{E}f}||_{L^{2}(S^{c})} &\geq ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(\mathbb{Z}_{N}^{d})} - ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} \\ &\geq \left(1 - \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}\right) ||f||_{L^{2}(E)}. \end{split}$$

We are now ready for the conclusion of the proof. We have

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq ||f||_{L^{2}(E)} + ||f||_{L^{2}(E^{c})}$$
$$\leq \left(1 - \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}\right)^{-1} ||\widehat{1_{E}f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 56 / 108

• We are left to unravel the quantity $||\widehat{1_E f}||_{L^2(S^c)}$. We have

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S^{c})} &= \|\mathbf{1}_{S^{c}}\widehat{f} - \mathbf{1}_{S^{c}}\widehat{\mathbf{1}_{E^{c}}f}\|_{L^{2}(\mathbb{Z}_{N}^{d})} \\ &\leq \|\widehat{f}\|_{L^{2}(S^{c})} + \|f\|_{L^{2}(E^{c})}. \end{split}$$

Plugging this back into above, we have

 $||f||_{L^2(\mathbb{Z}_N^d)} \leq$

$$\leq \left(1 - \sqrt{\frac{C_{p,q}^2 |S||E|^{\frac{2-p}{p}}}{N^d}}\right)^{-1} \left(||\widehat{f}||_{L^2(S^c)} + ||f||_{L^2(E^c)}\right) + ||f||_{L^2(E^c)}$$

and the case $1 \le p \le 2 \le q$ is established.

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$\|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(S)} \leq |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} \|f\|_{L^{p}(E)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 58 / 108

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$||\widehat{1_E f}||_{L^q(S)} \le |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} ||f||_{L^p(E)}$$

$$\leq |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}||f||_{L^{2}(E)}.$$

▲ 唐 ▶ | ▲ 唐 ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 58 / 108

۵

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$||\widehat{1_E f}||_{L^q(S)} \le |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} ||f||_{L^p(E)}$$

$$\leq |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}||f||_{L^{2}(E)}.$$

Lemma (Hausdorff-Young inequality)

۵

Suppose that $f:\mathbb{Z}_N^d\to\mathbb{C}$ and $1\leq p\leq 2.$ Then

$$||\widehat{f}||_{L^{p'}(\mathbb{Z}_N^d)} \leq N^{-\frac{d}{2}\left(\frac{2-p}{p}\right)}||f||_{L^p(\mathbb{Z}_N^d)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 58 / 108

• The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.

- The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.
- Using Hausdorff-Young, we have

$$\left\|\widehat{\mathbf{1}_{E}f}\right\|_{L^{q}(\mathbb{Z}_{N}^{d})} \geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}\left\|f\right\|_{L^{q'}(E)}$$

- The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.
- Using Hausdorff-Young, we have

$$\left\|\widehat{\mathbf{1}_{E}f}\right\|_{L^{q}(\mathbb{Z}_{N}^{d})} \geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}\left\|f\right\|_{L^{q'}(E)}$$

$$\geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}}||f||_{L^{2}(E)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 59 / 108

• Combining, we obtain

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}}-|S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}.$$

∃▶ ∢ ∃▶

• Combining, we obtain

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}} - |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}$$

• We now unravel $||\widehat{\mathbf{1}_E f}||_{L^q(S^c)}$. We have

$$\|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(S^{c})} = \|\widehat{f} - \widehat{\mathbf{1}_{E^{c}}f}\|_{L^{q}(S^{c})}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 60/108

• Combining, we obtain

۵

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}} - |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}$$

• We now unravel $||\widehat{\mathbf{1}_E f}||_{L^q(S^c)}$. We have

$$||\widehat{\mathbf{1}_E f}||_{L^q(S^c)} = ||\widehat{f} - \widehat{\mathbf{1}_{E^c} f}||_{L^q(S^c)}$$

$$\leq ||\widehat{f}||_{L^{q}(S^{c})} + ||\widehat{1_{E^{c}}f}||_{L^{q}(S^{c})}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 60 / 108

۲

 $\leq |S^{c}|^{\frac{1}{q}-\frac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}\right).$

∋ ► < ∃ ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61 / 108

$$\leq |S^{c}|^{rac{1}{q}-rac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}
ight).$$

• We have

۲

$$||f||_{L^2(\mathbb{Z}_N^d)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}.$$

∃▶ ∢ ∃▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61/108

$$\leq |S^{c}|^{rac{1}{q}-rac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}
ight).$$

We have

۲

$$||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}.$$

 Rearranging the terms yields the conclusion of the case 1 ≤ p ≤ q ≤ 2.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61/108

The additive energy annihilation inequality

Theorem

(A.I., P. Jaming, and A. Mayeli (2024)) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Let $E, S \subset \mathbb{Z}_N^d$ such that

$$\max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|E\right| < N^d.$$

Then

$$||f||_{L^2(\mathbb{Z}^d_N)} \le C_{ann}\left(||f||_{L^2(E^c)} + ||\widehat{f}||_{L^2(S^c)}\right),$$

where C_{ann} may be taken to be

$$1 + \frac{1}{1 - \sqrt{\frac{\left(\max_{U \subset S} \frac{h(U)}{|U|^2}\right)^{\frac{1}{2}} |E|^{\frac{1}{2}}}{N^{\frac{d}{2}}}}}$$

۰

Proof of the additive energy annihilation inequality

• This result follows by inserting

$$\left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}}$$

from the universal restriction theorem in place of the constant $C_{\frac{4}{3},2}$ in the restriction annihilation inequality above.

Proof of the additive energy annihilation inequality

• This result follows by inserting

$$\left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}}$$

from the universal restriction theorem in place of the constant $C_{\frac{4}{3},2}$ in the restriction annihilation inequality above.

• This is by no means the only universal restriction theorem one can write down, and there is much work left to do in this direction.

Proof of the additive energy annihilation inequality

• This result follows by inserting

$$\left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U \subset S} \frac{\Lambda(U)}{|U|^2}\right)^{\frac{1}{4}}$$

from the universal restriction theorem in place of the constant $C_{\frac{4}{3},2}$ in the restriction annihilation inequality above.

- This is by no means the only universal restriction theorem one can write down, and there is much work left to do in this direction.
- Similar results can be obtained in Euclidean space as well, and we shall talk about that if time allows.

A symmetrized extension

• We can symmetrize, as before, and replace Cann above with

for any $\alpha \in [0, 1]$ provided that

A symmetrized extension (continued)

 $\max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|E\right| < N^d$

* 原 ▶ * 居 ▶ ...

크

and

۲

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 65 / 108

A symmetrized extension (continued)

$$\max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|E\right| < N^d$$

and

۲

 $\max_{F \subset E} \frac{\Lambda(F)}{|F|^2} \cdot |S| < N^d.$

* E • * E •

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 65 / 108

A symmetrized extension (continued)

$$\max_{U \subset S} \frac{\Lambda(U)}{\left|U\right|^2} \cdot \left|E\right| < N^d$$

and

۵

$$\max_{F \subset E} \frac{\Lambda(F)}{|F|^2} \cdot |S| < N^d.$$

• As usual, the corresponding uncertainty principle can be deduced by assuming that f is supported in E and \hat{f} is supported in S.

An L^{p} annihilating pairs inequality

Theorem

(A.I., P. Jaming and. A. Mayeli (2024)) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Let $E, S \subset \mathbb{Z}_N^d$ such that S satisfies the (p,q) restriction estimate for some $1 \le p \le 2 \le q$, and $|E|^{2-p} \cdot |S| < \frac{N^d}{C_{p,q}^p}$. Then for $1 \le p \le 2$, $||f||_{L^{p'}(\mathbb{Z}_N^d)}$ is bound by

$$\frac{N^{-d\left(\frac{1}{2}-\frac{1}{p'}\right)}}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}||\widehat{f}||_{L^{p}(S^{c})}+\left(1+\frac{1}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}\right)||f||_{L^{p'}(E^{c})}.$$

Since (1, q) restriction estimate always holds with $C_{1,q} = 1$, then for any sets $E, S \subset \mathbb{Z}_N^d$ such that $|E||S| < N^d$, $||f||_{L^{\infty}(\mathbb{Z}_N^d)}$ is bounded by

$$\frac{N^{-\frac{d}{2}}}{1-\frac{|E||S|}{N^d}}||\widehat{f}||_{L^1(S^c)} + \left(1+\frac{1}{1-\frac{|E||S|}{N^d}}\right)||f||_{L^\infty(E^c)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 66 / 108

Proof of the L^p annihilating pairs inequality

• By the (p, q) restriction bound, we have

$$||\widehat{\mathbf{1}_E f}||_{L^p(S)} \leq |S|^{\frac{1}{p}} \cdot \left(\frac{1}{|S|} \sum_{m \in S} |\widehat{\mathbf{1}_E f}(m)|^q\right)^{\frac{1}{q}}$$

-∢ ∃ ▶

Proof of the L^p annihilating pairs inequality

• By the (p, q) restriction bound, we have

۰

$$||\widehat{1_E f}||_{L^p(S)} \leq |S|^{\frac{1}{p}} \cdot \left(\frac{1}{|S|} \sum_{m \in S} |\widehat{1_E f}(m)|^q\right)^{\frac{1}{q}}$$

$$\leq C_{p,q}N^{-\frac{d}{2}}|S|^{\frac{1}{p}}||f||_{L^{p}(E)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 67/108

Proof of the L^p annihilating pairs inequality

• By the (p, q) restriction bound, we have

٠

$$||\widehat{\mathbf{1}_E f}||_{L^p(S)} \leq |S|^{\frac{1}{p}} \cdot \left(\frac{1}{|S|} \sum_{m \in S} |\widehat{\mathbf{1}_E f}(m)|^q\right)^{\frac{1}{q}}$$

$$\leq C_{p,q}N^{-rac{d}{2}}|S|^{rac{1}{p}}||f||_{L^{p}(E)}$$

$$\leq C_{p,q}N^{-\frac{d}{2}}|S|^{\frac{1}{p}}|E|^{\frac{2-p}{p}}||f||_{L^{p'}(E)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 67 / 108

• On the other hand,

$$\|\widehat{\mathbf{1}_E f}\|_{L^p(S^c)} \ge \|\widehat{\mathbf{1}_E f}\|_{L^p(\mathbb{Z}_N^d)} - \|\widehat{\mathbf{1}_E f}\|_{L^p(S)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 68 / 108

• On the other hand,

٠

$$||\widehat{\mathbf{1}_E f}||_{L^p(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^p(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^p(S)}$$

$$\geq N^{\frac{d}{2}\left(1-\frac{2}{p'}\right)}||f||_{L^{p'}(E)} - C_{p,q}N^{-\frac{d}{2}}|S|^{\frac{1}{p}}|E|^{\frac{2-p}{p}}||f||_{L^{p'}(E)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 68 / 108

On the other hand,

۵

$$||\widehat{\mathbf{1}_E f}||_{L^p(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^p(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^p(S)}$$

$$\geq N^{\frac{d}{2}\left(1-\frac{2}{p'}\right)}||f||_{L^{p'}(E)} - C_{p,q}N^{-\frac{d}{2}}|S|^{\frac{1}{p}}|E|^{\frac{2-p}{p}}||f||_{L^{p'}(E)}$$

$$= N^{\frac{d}{2}\left(1-\frac{2}{p'}\right)} \left(1 - \left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}\right) ||f||_{L^{p'}(E^{c})},$$

where in the second line we used the Hausdorff-Young inequality.

• Observe that

$$||\widehat{\mathbf{1}_{E}f}||_{L^{p}(S^{c})} = ||\widehat{f} - \widehat{\mathbf{1}_{E^{c}}f}||_{L^{p}(S^{c})} \le ||\widehat{f}||_{L^{p}(S^{c})} + ||\widehat{\mathbf{1}_{E^{c}}f}||_{L^{p}(S^{c})}$$

- 3 ▶

Observe that

$$\|\widehat{\mathbf{1}_{E}f}\|_{L^{p}(S^{c})} = \|\widehat{f} - \widehat{\mathbf{1}_{E^{c}}f}\|_{L^{p}(S^{c})} \le \|\widehat{f}\|_{L^{p}(S^{c})} + \|\widehat{\mathbf{1}_{E^{c}}f}\|_{L^{p}(S^{c})}$$

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + \left(\sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p}\right)^{\frac{1}{p}}$$
$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p}} \left(\frac{1}{|S^{c}|}\sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p}\right)^{\frac{1}{p}}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 69/108

۰

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p}} \left(\frac{1}{|S^{c}|} \sum_{m \in S^{c}} |\widehat{\mathbf{1}_{E^{c}}f}(m)|^{p'}\right)^{\frac{1}{p'}} \\ = ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \left(\sum_{m \in S^{c}} |\widehat{\mathbf{1}_{E^{c}}f}(m)|^{p'}\right)^{\frac{1}{p'}}$$

ほ ト イ ヨ ト

э

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 108
۲

۲

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p}} \left(\frac{1}{|S^{c}|} \sum_{m \in S^{c}} |\widehat{\mathbf{1}_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$

$$= ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \left(\sum_{m \in S^{c}} |\widehat{\mathbf{1}_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \cdot N^{-\frac{d}{2}\left(1 - \frac{2}{p'}\right)}||f||_{L^{p}(E^{c})}$$

э

(注) ト - (注) ト

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 108

۲

۲

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p}} \left(\frac{1}{|S^{c}|} \sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$

$$= ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \left(\sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \cdot N^{-\frac{d}{2}\left(1 - \frac{2}{p'}\right)}||f||_{L^{p}(E^{c})}$$

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + N^{d\left(\frac{1}{p}-\frac{1}{2}\right)}||f||_{L^{p}(E^{c})}.$$

등 이 동 이

э

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 108

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p}} \left(\frac{1}{|S^{c}|} \sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$
$$= ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \left(\sum_{m \in S^{c}} |\widehat{1_{E^{c}}f}(m)|^{p'} \right)^{\frac{1}{p'}}$$

$$\leq ||\widehat{f}||_{L^{p}(S^{c})} + |S^{c}|^{\frac{1}{p} - \frac{1}{p'}} \cdot N^{-\frac{d}{2}\left(1 - \frac{2}{p'}\right)} ||f||_{L^{p}(E^{c})}$$

 $\leq ||\widehat{f}||_{L^{p}(S^{c})} + N^{d\left(\frac{1}{p}-\frac{1}{2}\right)}||f||_{L^{p}(E^{c})}.$

• By the triangle inequality,

۲

۲

۲

 $||f||_{L^{p'}(\mathbb{Z}^d_N)} \le ||f||_{L^{p'}(E)} + ||f||_{L^{p'}(E^c)}$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 108

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 71/108

٠

$$\leq \frac{N^{-d\left(\frac{1}{2}-\frac{1}{p'}\right)}}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}||\widehat{1_{E}f}||_{L^{p}(S^{c})}+||f||_{L^{p'}(E^{c})}$$

$$\leq \frac{N^{-d\left(\frac{1}{2}-\frac{1}{p'}\right)}}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}\cdot\left(||\widehat{f}||_{L^{p}(S^{c})}+N^{d\left(\frac{1}{p}-\frac{1}{2}\right)}||f||_{L^{p}(E^{c})}\right)+||f||_{L^{p'}(E^{c})}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 71/108

$$\leq \frac{N^{-d\left(\frac{1}{2}-\frac{1}{p'}\right)}}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}||\widehat{f}||_{L^{p}(S^{c})}$$

$$+\left(1+\frac{1}{1-\left(\frac{|E|^{2-p}|S|C_{p,q}^{p}}{N^{d}}\right)^{\frac{1}{p}}}\right)||f||_{L^{p'}(E^{c})},$$

and the proof is complete.

۲

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 72/108

A consequence of annihilating pairs inequalities

• The following result was originally proven directly by A.I. and A. Mayeli earlier this year, but it also follows directly from the annihilating pairs inequalities we just proved.

A consequence of annihilating pairs inequalities

• The following result was originally proven directly by A.I. and A. Mayeli earlier this year, but it also follows directly from the annihilating pairs inequalities we just proved.

Theorem

Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, and $\hat{f} : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $S \subset \mathbb{Z}_N^d$. Suppose S satisfies the (p,q) restriction estimate with norm $C_{p,q}$, $1 \le p \le q$, $p \le 2$.

i) If $q \ge 2$, then

$$|E|^{\frac{2-p}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}^2}.$$

ii) If $1 \le p \le q \le 2$, then

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot|S|\geq \frac{N^d}{C^q_{p,q}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 73/108

From Restriction to Exact Recovery

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support supp(f) = E. Let r be another signal with support of the same size such that $\hat{r}(m) = \hat{f}(m)$ for $m \notin S$, and 0 otherwise. Suppose $S \subset \mathbb{Z}_N^d$ satisfies the (p,q), p < 2, restriction estimate with uniform constant $C_{p,q}$. Then f can be reconstructed from r uniquely if

$$|E|^{\frac{1}{p}}\cdot|S|<\frac{N^{d}}{2^{\frac{1}{p}}C_{p,q}},$$

or if

$$|E|^{\frac{2-p}{p}} \cdot |S| < \frac{N^d}{2^{\frac{2-p}{p}}C_{p,q}^2} \text{ when } q \ge 2,$$

and

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot |S| < \frac{N^d}{2^{\frac{(q'-p)q}{q'p}}C_{p,q}^q} \text{ when } q \leq 2.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 74/108

• Donoho and Stark showed that if $f : \mathbb{Z}_N^d \to \mathbb{C}$, and $E, S \subset \mathbb{Z}_N^d$ such that f is concentrated in E at level ϵ_E in the sense that

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

```
||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},
```

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

$$||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},$$

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

$$||\widehat{f}||_{L^2(S^c)} \le \epsilon_S ||\widehat{f}||_{L^2(\mathbb{Z}^d_N)}$$

with ϵ_E, ϵ_S both < 1, then

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

$$||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},$$

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

$$||\widehat{f}||_{L^2(S^c)} \le \epsilon_S ||\widehat{f}||_{L^2(\mathbb{Z}_N^d)}$$

with ϵ_E, ϵ_S both < 1, then

$$\epsilon_E + \epsilon_S \ge 1 - \sqrt{\frac{|E||S|}{N^d}}.$$

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

- ∢ ∃ →

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and suppose that f is L^2 -concentrated on E at level $\epsilon_E > 0$ and \hat{f} is L^2 -concentrated on S at level ϵ_S . Suppose that $S \subset \mathbb{Z}_N^d$ satisfying the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$\epsilon_{\mathcal{E}} + \epsilon_{\mathcal{S}} \geq \frac{1}{1 + \frac{1}{1 - \sqrt{\frac{C_{\mathcal{P},q}^2 |\mathcal{E}|^{\frac{2-\rho}{p}} |S|}{N^d}}}}$$

۲

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and suppose that f is L^2 -concentrated on E at level $\epsilon_E > 0$ and \hat{f} is L^2 -concentrated on S at level ϵ_S . Suppose that $S \subset \mathbb{Z}_N^d$ satisfying the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$\epsilon_E + \epsilon_S \geq rac{1}{1 + rac{1}{1 - \sqrt{rac{C_{p,q}^2 |E|^{rac{2-p}{p}}{|S|}}{N^d}}}}$$

۲

• Note that in the case p = 1, when the restriction estimate always holds with constant $C_{1,q} = 1$, we recover a condition that is slightly stronger than the Donoho-Stark condition above.

Proof of the concentration inequality

• The concentration inequality and the assumptions on the concentration of f on E and concentration of \hat{f} on S imply that

$$\begin{split} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{split}$$

Proof of the concentration inequality

 The concentration inequality and the assumptions on the concentration of f on E and concentration of f on S imply that

$$\begin{aligned} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{aligned}$$

• It follows that if f is not identically 0, then

 $C_{ann}(\epsilon_E + \epsilon_S) \geq 1,$

which implies that

Proof of the concentration inequality

 The concentration inequality and the assumptions on the concentration of f on E and concentration of f on S imply that

$$\begin{aligned} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{aligned}$$

• It follows that if f is not identically 0, then

$$C_{ann}(\epsilon_E + \epsilon_S) \ge 1,$$

which implies that

$$\epsilon_{E} + \epsilon_{S} \geq \frac{1}{C_{ann}},$$

and the proof is complete.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 77 / 108

Arithmetic ideas and uncertinty

 In 2006, Terry Tao proved that if f : Z_p → C, p prime, f is supported in E and f is supported in S, then

 $|E|+|S| \ge p+1.$

Arithmetic ideas and uncertinty

 In 2006, Terry Tao proved that if f : Z_p → C, p prime, f is supported in E and f is supported in S, then

$$|E|+|S|\ge p+1.$$

• The key element of the proof is a classical theorem due to Cebotarev which says that if $A, B \subset \mathbb{Z}_p$, |A| = |B|, then

 $det\{\chi(xm)\}_{x\in A,m\in B} \neq 0, \text{ where } \chi(t) = e^{\frac{2\pi it}{p}}.$

Arithmetic ideas and uncertinty

 In 2006, Terry Tao proved that if f : Z_p → C, p prime, f is supported in E and f is supported in S, then

$$|E|+|S|\ge p+1.$$

• The key element of the proof is a classical theorem due to Cebotarev which says that if $A, B \subset \mathbb{Z}_p$, |A| = |B|, then

$$det\{\chi(xm)\}_{x\in A,m\in B} \neq 0$$
, where $\chi(t) = e^{\frac{2\pi it}{p}}$.

• Roy Meshulam used Tao's result and a beautiful iteration argument show that if $f : \mathbb{Z}_p^d \to \mathbb{C}$ is supported in E and \hat{f} is supported in S, then for $0 \le j \le d - 1$,

$$p^{j}|E| + p^{d-j-1}|S| \ge p^{d} + p^{d-1}.$$

Sketch of the proof of Cebotarev's theorem

• Observe that if $P(x_1, \ldots, x_n)$ is a polynomial with integer entries, and

$$P(\omega_1,\ldots,\omega_n)=0,$$

where $\omega_1, \ldots, \omega_n$ are roots of unity modulo p, then

$$P(1,\ldots,1)=0.$$

Let $\omega_j = e^{\frac{2\pi i \kappa_j}{p}}$. We must show that

$$det\{\omega_j^{\xi_k}\}_{1\leq j,k\leq n}\neq 0.$$

* 原 * * 原 *

• Define

$$D(z_1,\ldots,z_n) = det\{z_j^{\xi_k}\}_{1 \le j,k \le n}$$
$$= P(z_1,\ldots,z_n) \prod_{1 \le j < j' \le n} (z_j - z_{j'}).$$

The proof is completed by showing that P(1,...,1), which follows by a tedious calculation which reduces matters to the fact that the classical Vandermonde determinant $\neq 0$.

 Suppose not. We assume that |E| ≥ 1 since otherwise there is nothing to prove. For every m ∉ S, we have

$$0=\widehat{f}(m)=p^{-\frac{1}{2}}\sum_{x\in E}\chi(-xm)f(x).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 81/108

 Suppose not. We assume that |E| ≥ 1 since otherwise there is nothing to prove. For every m ∉ S, we have

$$0=\widehat{f}(m)=p^{-\frac{1}{2}}\sum_{x\in E}\chi(-xm)f(x).$$

• This gives us p - |S| equations and |E| unknowns, where the unknowns are the values of f(x), $x \in E$.

 Suppose not. We assume that |E| ≥ 1 since otherwise there is nothing to prove. For every m ∉ S, we have

$$0=\widehat{f}(m)=p^{-\frac{1}{2}}\sum_{x\in E}\chi(-xm)f(x).$$

- This gives us p |S| equations and |E| unknowns, where the unknowns are the values of f(x), $x \in E$.
- By assumption, $p |S| \ge |E|$, so we have at least as many equations as variables. By removing equations, as necessary, we may assume that we have exactly as many equations as variables.

 Suppose not. We assume that |E| ≥ 1 since otherwise there is nothing to prove. For every m ∉ S, we have

$$0=\widehat{f}(m)=p^{-\frac{1}{2}}\sum_{x\in E}\chi(-xm)f(x).$$

- This gives us p |S| equations and |E| unknowns, where the unknowns are the values of f(x), $x \in E$.
- By assumption, $p |S| \ge |E|$, so we have at least as many equations as variables. By removing equations, as necessary, we may assume that we have exactly as many equations as variables.
- By Chebotarev's theorem, the resulting square matrix is invertible, which implies that f(x) = 0 for all x ∈ E. This completes the proof.

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f : \mathbb{Z}_p^2 \to \mathbb{Q}$, p odd prime. Suppose that $\hat{f}(m) = 0$ for some $m \neq (0,0)$. Then $\hat{f}(rm) = 0$ for all $r \neq 0$.

Moreover, if $f(x) = 1_E(x)$, the indicator function of $E \subset \mathbb{Z}_p^2$, and $\widehat{1}_E(m) = 0$ for some $m \neq (0,0)$, then E is equidistributed on the p lines orthogonal to m.

۲

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f : \mathbb{Z}_p^2 \to \mathbb{Q}$, p odd prime. Suppose that $\hat{f}(m) = 0$ for some $m \neq (0,0)$. Then $\hat{f}(rm) = 0$ for all $r \neq 0$.

Moreover, if $f(x) = 1_E(x)$, the indicator function of $E \subset \mathbb{Z}_p^2$, and $\widehat{1}_E(m) = 0$ for some $m \neq (0,0)$, then E is equidistributed on the p lines orthogonal to m.

۲

• Suppose that $\widehat{1}_E(m) = 0$, as above, with $m \neq (0,0)$ and let $r \neq 0$. We have

$$\widehat{1}_{E}(rm) = p^{-2} \sum_{t} \zeta^{\frac{t}{r}} n(t/r) = p^{-2} \sum_{t} \zeta^{t} n(t) = 0.$$

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f : \mathbb{Z}_p^2 \to \mathbb{Q}$, p odd prime. Suppose that $\hat{f}(m) = 0$ for some $m \neq (0,0)$. Then $\hat{f}(rm) = 0$ for all $r \neq 0$.

Moreover, if $f(x) = 1_E(x)$, the indicator function of $E \subset \mathbb{Z}_p^2$, and $\widehat{1}_E(m) = 0$ for some $m \neq (0,0)$, then E is equidistributed on the p lines orthogonal to m.

۲

• Suppose that $\widehat{1}_{E}(m) = 0$, as above, with $m \neq (0,0)$ and let $r \neq 0$. We have

$$\widehat{1}_{E}(rm) = p^{-2} \sum_{t} \zeta^{\frac{t}{r}} n(t/r) = p^{-2} \sum_{t} \zeta^{t} n(t) = 0.$$

• It follows that if $m \neq (0,0)$ is a zero of $\hat{1}_E$, then so is every non-zero multiple of m.

Proof of the magic lemma

• Observe that

$$0 = \sum_{t} \zeta^{t} n(t) = n(0) + n(1)\zeta + n(2)\zeta^{2} + \dots + n(p-1)\zeta^{p-1}$$

says that ζ satisfies the polynomial of degree p-1 with coefficients given by $\{n(t)\}$.

∋ ► < ∃ ►

Proof of the magic lemma

Observe that

$$0 = \sum_{t} \zeta^{t} n(t) = n(0) + n(1)\zeta + n(2)\zeta^{2} + \dots + n(p-1)\zeta^{p-1}$$

says that ζ satisfies the polynomial of degree p-1 with coefficients given by $\{n(t)\}$.

• The minimal polynomial of ζ is

$$1+\zeta+\zeta^2+\cdots+\zeta^{p-1}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 83/108

Proof of the magic lemma

Observe that

$$0 = \sum_{t} \zeta^{t} n(t) = n(0) + n(1)\zeta + n(2)\zeta^{2} + \dots + n(p-1)\zeta^{p-1}$$

says that ζ satisfies the polynomial of degree p-1 with coefficients given by $\{n(t)\}$.

• The minimal polynomial of ζ is

$$1+\zeta+\zeta^2+\cdots+\zeta^{p-1}.$$

We conclude that n(t) = constant, so E has the same number of points on lines ⊥ m. In particular, |E| is a multiple of p.

The uncertainty principle in the continuous setting

• The remainder of the material in these lectures will be dedicated to the uncertainty principle and related topics in the continuous setting. More precisely, the following topics will be covered:

The uncertainty principle in the continuous setting

- The remainder of the material in these lectures will be dedicated to the uncertainty principle and related topics in the continuous setting. More precisely, the following topics will be covered:
- i) Spectral synthesis in \mathbb{R}^d and connections with restriction theory.
The uncertainty principle in the continuous setting

- The remainder of the material in these lectures will be dedicated to the uncertainty principle and related topics in the continuous setting. More precisely, the following topics will be covered:
- i) Spectral synthesis in \mathbb{R}^d and connections with restriction theory.
- ii) The uncertainty principle on Riemannian manifolds.

The uncertainty principle in the continuous setting

- The remainder of the material in these lectures will be dedicated to the uncertainty principle and related topics in the continuous setting. More precisely, the following topics will be covered:
- i) Spectral synthesis in \mathbb{R}^d and connections with restriction theory.
- ii) The uncertainty principle on Riemannian manifolds.
- iii) A random variant of Shannon-Nyquist sampling on Riemannian manifolds and unique continuation of the Laplace-Beltrami operator.

Another version of the uncertainty principle

• The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L^1_{loc}(\mathbb{R}^d)$ and \widehat{f} is supported in S is a k-dimensional submanifold of \mathbb{R}^d . Suppose further that $f \in L^p(\mathbb{R}^d)$ for some $p \leq \frac{2d}{k}$. Then $f \equiv 0$.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L^1_{loc}(\mathbb{R}^d)$ and \widehat{f} is supported in S is a k-dimensional submanifold of \mathbb{R}^d . Suppose further that $f \in L^p(\mathbb{R}^d)$ for some $p \leq \frac{2d}{k}$. Then $f \equiv 0$.
- A natural question is whether the exponent $\frac{2d}{k}$ is **sharp**, and what does it have to with **restriction theory**? If k = d 1 and S^{d-1} is the unit sphere, $\frac{2d}{d-1}$ is the sharp conjectured exponent for the dual of the restriction conjecture.

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^{\infty}$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 86 / 108

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^\infty$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Let

$$u_{\epsilon} = u * \chi_{\epsilon}, \ u = \widehat{f}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 86 / 108

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^{\infty}$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Let

$$u_{\epsilon} = u * \chi_{\epsilon}, \ u = \widehat{f}.$$

• By Plancherel,

$$||u_{\epsilon}||_{2} = \left(\int |f(x)|^{2} |\widehat{\chi}(\epsilon x)|^{2} dx\right)^{\frac{1}{2}} \lesssim ||f||_{p} \cdot \epsilon^{-\frac{d}{p'}}.$$

 \bullet Let ψ be a smooth cut-off function. We have

$$|\langle u_{\epsilon},\psi
angle|^{2}\leq||u_{\epsilon}||_{2}^{2}\cdot\int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^{2}d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

$$\lesssim ||f||_{
ho}^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_{\infty}^2 \cdot |S^{\epsilon}|$$

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

٥

$$| \lesssim ||f||_p^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^\epsilon|$$

•
$$\lesssim \epsilon^{-\frac{2d}{p'}} \cdot \epsilon^{d-k} \to 0 \text{ if } p < \frac{2d}{k}$$

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

$$\lesssim ||f||_p^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^\epsilon|$$

•
$$\lesssim \epsilon^{-rac{2d}{p'}} \cdot \epsilon^{d-k} o 0$$
 if $p < rac{2d}{k}$

• With a bit more care, it is not difficult to recover the endpoint.

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

۵

$$\lesssim ||f||_p^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^\epsilon|$$

$$\lesssim \epsilon^{-rac{2d}{p'}} \cdot \epsilon^{d-k} o 0$$
 if $p < rac{2d}{k}$

- With a bit more care, it is not difficult to recover the endpoint.
- The same argument works for any set of packing dimension k (not necessarily an integer).

Sharpness (or lack of it)

• If $S = S^{d-1}$, it is not difficult to see that the exponent $\frac{2d}{k} = \frac{2d}{d-1}$ is best possible since

$$\widehat{\sigma}_{\mathcal{S}}(\xi) = J_{\frac{d-2}{2}}(|\xi|)|\xi|^{-\frac{d-2}{2}} \in L^p(\mathbb{R}^d) \text{ iff } p > \frac{2d}{d-1},$$

where σ is the surface measure on S.

Sharpness (or lack of it)

• If $S = S^{d-1}$, it is not difficult to see that the exponent $\frac{2d}{k} = \frac{2d}{d-1}$ is best possible since

$$\widehat{\sigma}_{\mathcal{S}}(\xi) = J_{\frac{d-2}{2}}(|\xi|)|\xi|^{-\frac{d-2}{2}} \in L^p(\mathbb{R}^d) \text{ iff } p > \frac{2d}{d-1},$$

where σ is the surface measure on S.

• On the other hand, if

$$S = \left\{ (t, t^2, \dots, t^d) : t \in [0, 1] \right\}, \ d \ge 3,$$

it is known that

$$\widehat{\sigma}_{S} \in L^{p}(\mathbb{R}^{d}) \text{ iff } p > \frac{d^{2}+d+2}{2} > \frac{2d}{k} = 2d.$$

A geometric approach to spectral synthesis

• Let \hat{f} be supported in S and let us cover S by a collection of **finitely overlapping** rectangles

 $\{R_{j,\delta}\}_{j=1}^{N(\delta)}, \ |R_{j,\delta}| \to 0 \text{ as } \delta \to 0.$

A geometric approach to spectral synthesis

• Let \hat{f} be supported in S and let us cover S by a collection of **finitely overlapping** rectangles

$$\{R_{j,\delta}\}_{j=1}^{\mathcal{N}(\delta)}, \ |R_{j,\delta}| \to 0 \text{ as } \delta \to 0.$$

• Let $\mu_{j,\delta}$ denote a smooth partition of unity subordinate to $\{R_{j,\delta}\}_{j=1}^{N(\delta)}$. Since \hat{f} is supported in S, it is sufficient to consider

$$\widehat{f}(\xi) \cdot \sum_{j=1}^{N(\delta)} \mu_{j,\delta}(\xi), \text{ i.e.}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 89 / 108

٠

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}.$$

- ∢ ∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 90 / 108

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}$$

• By Plancherel,

$$\left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{2} \approx \left(\sum_{j=1}^{N(\delta)} |R_{j,\delta}| \right)^{\frac{1}{2}} \equiv |S^{\delta}|^{\frac{1}{2}}.$$

- ∢ ∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 90 / 108

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}.$$

• By Plancherel,

۵

$$\left\| \left| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{2} \approx \left(\sum_{j=1}^{N(\delta)} |R_{j,\delta}| \right)^{\frac{1}{2}} \equiv |S^{\delta}|^{\frac{1}{2}}.$$

• Note that S^{δ} is not necessarily the δ -neighborhood of S.

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{\mathsf{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{\mathsf{N}(\delta)} |\mathsf{R}_{j,\delta}| \cdot |\mathsf{R}_{j,\delta}^*| = \mathsf{N}(\delta).$$

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{\mathcal{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{\mathcal{N}(\delta)} |\mathcal{R}_{j,\delta}| \cdot |\mathcal{R}_{j,\delta}^*| = \mathcal{N}(\delta).$$

• By Riesz-Thorin,

$$\left\| \left| \sum_{j=1}^{\mathsf{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'} \lesssim \left| S^{\delta} \right|^{\frac{1}{p}} \cdot \left(\mathsf{N}(\delta) \right)^{1-\frac{2}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 91/108

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{\mathcal{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{\mathcal{N}(\delta)} |\mathcal{R}_{j,\delta}| \cdot |\mathcal{R}_{j,\delta}^*| = \mathcal{N}(\delta).$$

• By Riesz-Thorin,

$$\left\|\left|\sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta}\right\|\right|_{p'} \lesssim \left|S^{\delta}\right|^{\frac{1}{p}} \cdot \left(N(\delta)\right)^{1-\frac{2}{p}}.$$

• The idea is to find the largest p for which this quantity $\rightarrow 0$ as $\delta \rightarrow 0$.

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

∋ ► < ∃ ►

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

It follows that

 $|S^{\delta}| \approx \delta$, and $N(\delta) = 1$.

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

It follows that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) = 1$.

We conclude that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \approx \delta^{\frac{1}{p}},$$

which goes to 0 for any $p < \infty$.

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

 $|S^{\delta}| \approx \delta$, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

It follows that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{1}{p}} \cdot \delta^{-\frac{d-1}{2}\left(1-\frac{2}{p}\right)} = \delta^{\frac{d}{p}-\frac{d-1}{2}}.$$

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

It follows that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{1}{p}} \cdot \delta^{-\frac{d-1}{2}\left(1-\frac{2}{p}\right)} = \delta^{\frac{d}{p}-\frac{d-1}{2}}$$

• It follows that the critical value for p is $\frac{2d}{d-1}$, which is consistent with Agranovsky-Narayanan's theorem.

• Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.

くほう くほう

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^{δ} is not the δ -neighborhood of S.

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^δ is not the δ-neighborhood of S.
- It follows that

$$|S^{\delta}| \approx \delta^{\frac{d+1}{2} - \frac{1}{d}}$$
, and $N(\delta) \approx \delta^{-\frac{1}{d}}$.

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^δ is not the δ-neighborhood of S.
- It follows that

$$|S^{\delta}| \approx \delta^{\frac{d+1}{2} - \frac{1}{d}}$$
, and $N(\delta) \approx \delta^{-\frac{1}{d}}$.

• We conclude that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{d+1}{2p}} \cdot \delta^{-\frac{1}{dp}} \cdot \delta^{-\frac{1}{d}\left(1-\frac{2}{p}\right)}, \text{ hence}$$

$$p_{critical} = \frac{d^2 + d + 2}{2}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 94 / 108

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

• Note that the Agranovsky-Narayanan theorem yields the same conclusion for *p* < 2*d* in this case.

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

- Note that the Agranovsky-Narayanan theorem yields the same conclusion for p < 2d in this case.
- We also note that $\frac{d^2+d+2}{2}$ is the optimal extension exponent (more on that in a moment).
Connections with the restriction conjecture

• On the very first page of these notes, we discussed the restriction conjecture, which says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}} \left|\widehat{f}(\xi)\right|^r d\sigma_S(\xi)\right)^{\frac{1}{r}} \leq C_{p,r} \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 96 / 108

Connections with the restriction conjecture

• On the very first page of these notes, we discussed the restriction conjecture, which says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}} \left|\widehat{f}(\xi)\right|^r d\sigma_S(\xi)\right)^{\frac{1}{r}} \leq C_{p,r} \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

• It is often convenient to state the dual of this inequality, the extension conjecture.

The extension conjecture

• The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1},\ p'<rac{d-1}{d+1}q.$$

The extension conjecture

The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1}, \,\, p'<rac{d-1}{d+1}q.$$

 In general, if S is compact, equipped with Borel measure σ_S, we say that a (p, q)-extension estimate holds for S if

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(\sigma_S)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 97 / 108

The extension conjecture

The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1}, \,\, p'<rac{d-1}{d+1}q.$$

 In general, if S is compact, equipped with Borel measure σ_S, we say that a (p, q)-extension estimate holds for S if

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(\sigma_S)}.$$

• We call the inf of q's for which this estimate holds the critical extension exponent of S.

• Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.

- Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.
- I do not believe this conjecture. A potential counter-example is a compact strictly convex surface S, which has non-vanishing curvature in the sense that the volume of δ -caps is $\geq c\delta^{\frac{d+1}{2}}$ with c > 0 uniform.

- Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.
- I do not believe this conjecture. A potential counter-example is a compact strictly convex surface S, which has non-vanishing curvature in the sense that the volume of δ-caps is ≥ cδ^{d+1}/₂ with c > 0 uniform.
- I believe that it is possible to construct such a surface so that the critical extension exponent is >> ^{2d}/_{d-1}.

Signal recovery on manifolds (joint work with A. Mayeli and E. Wyman)

• Let *M* be a compact Riemannian manifold without a boundary, and let $\{e_j\}_{j=1}^{\infty}$ be the family of L^2 -normalized eigenfunctions of $\sqrt{-\Delta}$.

Signal recovery on manifolds (joint work with A. Mayeli and E. Wyman)

- Let *M* be a compact Riemannian manifold without a boundary, and let $\{e_j\}_{j=1}^{\infty}$ be the family of L^2 -normalized eigenfunctions of $\sqrt{-\Delta}$.
- Suppose that A is a measurable subset of M and we wish to recover $1_A(x)$ from its Fourier coefficients, with frequencies in $\{j : \lambda_j \in S\}$ missing, where S is a subset of Λ , the set of eigenvalues of $\sqrt{-\Delta}$.

Signal recovery on manifolds (joint work with A. Mayeli and E. Wyman)

- Let *M* be a compact Riemannian manifold without a boundary, and let {*e_j*}[∞]_{*i*=1} be the family of *L*²-normalized eigenfunctions of √−△.
- Suppose that A is a measurable subset of M and we wish to recover $1_A(x)$ from its Fourier coefficients, with frequencies in $\{j : \lambda_j \in S\}$ missing, where S is a subset of Λ , the set of eigenvalues of $\sqrt{-\Delta}$.

• We have

$$egin{aligned} 1_{\mathcal{A}}(x) &= \sum_{j} < 1_{\mathcal{A}}, e_{j} > e_{j} = \sum_{j \notin \{j: \lambda_{j} \in S\}} < 1_{\mathcal{A}}, e_{j} > e_{j} + \ &+ \sum_{j \in \{j: \lambda_{j} \in S\}} < 1_{\mathcal{A}}, e_{j} > e_{j} = I(x) + II(x). \end{aligned}$$

Eigenvalues can be large

• We have

$$|II(x)| \leq |A|^{\frac{1}{2}} \cdot \left(\sum_{j \in \{j: \lambda_j \in S\}} |e_j(x)|^2\right)^{\frac{1}{2}}.$$

* E • * E •

æ

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 100 / 108

Eigenvalues can be large

We have

$$|II(x)| \leq |\mathcal{A}|^{\frac{1}{2}} \cdot \left(\sum_{j \in \{j: \lambda_j \in S\}} |e_j(x)|^2\right)^{\frac{1}{2}}.$$

• If the **eigenfunctions are bounded**, we can run the same argument as before and obtain an exact recovery condition of the form

$$|\mathsf{A}| \lesssim rac{1}{\#\{j:\lambda_j\in S\}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 100 / 108

Eigenvalues can be large

$$|II(x)| \leq |A|^{rac{1}{2}} \cdot \left(\sum_{j \in \{j: \lambda_j \in S\}} |e_j(x)|^2\right)^{rac{1}{2}}$$

• If the **eigenfunctions are bounded**, we can run the same argument as before and obtain an exact recovery condition of the form

$$|\mathsf{A}| \lesssim rac{1}{\#\{j:\lambda_j\in S\}}$$

• If the manifold is **homogeneous** in the sense that there exists a **transitive group action** on *M*, the argument also goes through. But on general manifolds the situation is less clear.

• The basic question we ask is the following. Let (M, g) be a compact d-dimensional Riemannian manifold, as above, and let e_1, e_2, \ldots, e_n denote the eigenfunctions of the Laplace-Beltrami operator on M, where the corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are not necessarily the *lowest* n eigenvalues.

- The basic question we ask is the following. Let (M, g) be a compact d-dimensional Riemannian manifold, as above, and let e₁, e₂, ..., e_n denote the eigenfunctions of the Laplace-Beltrami operator on M, where the corresponding eigenvalues λ₁, λ₂,..., λ_n are not necessarily the *lowest* n eigenvalues.
- When can we learn a function f ∈ span{e₁,..., e_n} by observing its value on some finite set of points x₁,..., x_m?

 Note, given such an f, we need only identify its Fourier coefficients a_j in

$$f=\sum_j a_j e_j.$$

 Note, given such an f, we need only identify its Fourier coefficients a_j in

$$f=\sum_j a_j e_j.$$

But,

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_m) \end{bmatrix} = \begin{bmatrix} e_1(x_1) & \cdots & e_n(x_1) \\ e_1(x_2) & \cdots & e_n(x_2) \\ \vdots & & \vdots \\ e_1(x_m) & \cdots & e_n(x_m) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = A \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Hence, the recovery problem is equivalent to the matrix A having a left inverse. This necessitates $m \ge n$.

• The Nyquist-Shannon sampling theorem (ancient) says that if M is the one-dimensional torus and the frequencies of f are in [-R, R], then we can recover f from any net of separation $\leq \frac{1}{2R}$.

- The Nyquist-Shannon sampling theorem (ancient) says that if M is the one-dimensional torus and the frequencies of f are in [-R, R], then we can recover f from any net of separation $\leq \frac{1}{2R}$.
- This result was generalized to the setting of Riemannian manifolds by Pesenson (2008). In particular, if (M, g) is a *d*-dimensional Riemannian manifold and *f* is a finite linear combination of eigenfunctions $\{e_j\}$ with the corresponding eigenvalues bounded by *R*, then *f* can be recovered from $\approx R^d$ suitably separated samples.

- The Nyquist-Shannon sampling theorem (ancient) says that if M is the one-dimensional torus and the frequencies of f are in [-R, R], then we can recover f from any net of separation $\leq \frac{1}{2R}$.
- This result was generalized to the setting of Riemannian manifolds by Pesenson (2008). In particular, if (M, g) is a *d*-dimensional Riemannian manifold and *f* is a finite linear combination of eigenfunctions $\{e_j\}$ with the corresponding eigenvalues bounded by *R*, then *f* can be recovered from $\approx R^d$ suitably separated samples.
- This type of a result is quite efficient if the spectrum of the function consists of all the possible eigenfunctions with eigenvalues in a given range, but if the set of eigenvalues is relatively sparse, a much better result can expected. We will show that, if *n* points *x*₁,...,*x_n* are selected randomly and independently with uniform probability from *M*, then *A* almost certainly has non-zero determinant.

Theorem

(A.I. and E. Wyman, 2024) Let (M, g) be a compact, connected Riemannian manifold without boundary, and e_1, \ldots, e_n be an orthonormal set of Laplace-Beltrami eigenfunctions on M. If x_1, \ldots, x_n are chosen independently and with uniform probability from M, then

$$\det \begin{bmatrix} e_1(x_1) & \cdots & e_n(x_1) \\ \vdots & & \vdots \\ e_1(x_n) & \cdots & e_n(x_n) \end{bmatrix} \neq 0$$

with probability 1.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 104/108

Theorem

(A.i. and E. Wyman, 2024) Let (M, g) be a compact, connected Riemannian manifold without boundary, and e_1, \ldots, e_n be an orthonormal set of Laplace-Beltrami eigenfunctions on M. If x_1, \ldots, x_n are chosen independently and with uniform probability from M, then there exists a positive integer $k \ge 2$ such that

$$\mathbb{P}\left\{ \left| \det \begin{bmatrix} e_1(x_1) & \cdots & e_n(x_1) \\ \vdots & & \vdots \\ e_1(x_n) & \cdots & e_n(x_n) \end{bmatrix} \right| \leq \epsilon \right\} \leq c\epsilon^{\frac{1}{k}},$$

where c is a universal constant.

Corollary

(A.I. and E. Wyman, 2024) Let (M, g) be a compact, connected Riemannian manifold without boundary, and e_1, \ldots, e_n be an orthonormal set of Laplace-Beltrami eigenfunctions on M. If x_1, \ldots, x_n are chosen independently and with uniform probability from M, then there exists a positive integer $k \ge 2$ such that

$$\mathbb{P}\left\{\lambda_{lowest}(x_1,\ldots,x_n)\leq\epsilon\right\}\leq c\epsilon^{\frac{1}{nk}},$$

where c is a universal constant and $\lambda_{lowest}(x)$ is the smallest eigenvalue of the matrix

$$\begin{bmatrix} e_1(x_1) & \cdots & e_n(x_1) \\ \vdots & & \vdots \\ e_1(x_n) & \cdots & e_n(x_n) \end{bmatrix}$$

Lemma

If a finite linear combination of Laplace-Beltrami eigenfunctions vanishes to infinite order at a point in a connected, compact manifold, then it vanishes identically on the manifold.

۲

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 107/108

Lemma

If a finite linear combination of Laplace-Beltrami eigenfunctions vanishes to infinite order at a point in a connected, compact manifold, then it vanishes identically on the manifold.

٩

• The proof follows from the strong unique continuation property of solutions of the Laplace-Beltrami eigenfunction equations.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 108 / 108