ICMU Mini-Course "Limits of Discrete Structures"

Oleg Pikhurko

Recommended reading:

- László Lovász "Large networks and graph limits" (link)
- Yufei Zhao "Graph Theory and Additive Combinatorics" (link)

Notation/Terminology

 $[n] := \{1, \ldots, n\}$ Indicator function $\mathbb{1}_A(x) := \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ $(n)_k := n(n-1)\dots(n-k+1)$ $\mathcal{F}_k := \{ \text{graphs on } [k] \}$ $F \cong G$: F and G are isomorphic graphs $\mathcal{G} := \{ \text{ finite graphs up to isomorphism } \}$ Order v(G) = |V(G)|Size e(G) = |E(G)| \overline{G} : complement of G P_n, C_n, K_n : resp. path, cycle, clique on n vertices *m*-blowup G(m): make *m* 'clones' of each vertex $FG := F \sqcup G$ (disjoint union) for $F, G \in \mathcal{G}$ Homomorphism $f: F \to G$: map $f: V(F) \to V(G)$ s.t. $f(E(F)) \subseteq E(G)$ $\hom(F,G) := |\{f: F \to G\}|$ $\operatorname{inj}(F,G) := |\{ \text{ injective homs } f : F \to G \}|$ $\operatorname{ind}(F,G) := |\{ \text{ injective homs } f: F \to G \text{ st } \forall xy \in E(\emptyset F) \ f(x)f(y) \in E(\emptyset G) \}|,$ Graph parameter $f: \mathcal{G} \to \mathbb{R}$ Upper Möbius inverse:

$$f^{\uparrow}(F) := \sum_{F' \in \mathcal{F}_k : E(F') \supseteq E(F)} (-1)^{e(F') - e(F)} f(F'), \quad F \in \mathcal{F}_k$$

Let v(F) = k and v(G) = n. Homomorphism densities:

$$t(F,G) := \hom(F,G)/n^{k}$$

$$t_{\mathrm{ind}}(F,G) := \operatorname{ind}(F,G)/(n)_{k}$$

$$t_{\mathrm{inj}}(F,G) := \operatorname{inj}(F,G)/(n)_{k}$$

 $\phi: \mathcal{G} \to \mathbb{R}$ is normalised if $\phi(K_1) = 1$ and multiplicative if $\phi(FG) = \phi(F)\phi(G)$ for all $F, G \in \mathcal{G}$ (G_n) convergent to $\phi: \mathcal{G} \to \mathbb{R}$ (denoted $(G_n) \to \phi$) if $\lim_{n \to \infty} t(F, G_n) = \phi(F)$ for all $F \in \mathcal{G}$ LIM := $\{\phi : \mathcal{G} \to [0,1] : \exists (G_n) \to \phi\} \subseteq [0,1]^{\mathcal{G}}$ (G_n) is *p*-quasirandom if $\lim_{n\to\infty} t(F,G_n) = p^{e(F)}$ for all $F \in \mathcal{G}$ Sampling from $\phi \in \text{LIM}$: distribution $\mathbb{G}(n,\phi)$ on \mathcal{F}_n where the probability of $F \in \mathcal{F}_n$ is $\phi^{\uparrow}(F)$ Kernel: measurable bounded function $W : [0,1]^2 \to \mathbb{R}$ which is symmetric (i.e. W(x,y) = W(y,x)) Graphon: [0,1]-valued kernel (i.e. $0 \leq W \leq 1$) $\mathcal{W} := \{\text{kernels}\}$ $\mathcal{W}_0 := \{\text{graphons}\}$ $t(F,W) := \int_{[0,1]^k} \prod_{ij\in E} W(x_i,x_j) dx_1 \dots dx_k$, for $F \in \mathcal{F}_k$ and $W \in \mathcal{W}$ Random sample $\mathbb{G}(n,W)$: take uniform $x_1,\dots,x_n \in [0,1]$ and then connect $ij \in {[n] \choose 2}$ with probability $W(x_i,x_j)$ (all choices independent) For $G \in \mathcal{F}_k$, define

$$W_G(x,y) := \begin{cases} 1, & x \in \left[\frac{i-1}{k}, \frac{i}{k}\right), y \in \left[\frac{j-1}{k}, \frac{j}{k}\right), ij \in E(G) \\ 0, & \text{otherwise} \end{cases}$$

 $\begin{aligned} Cut \ norm \ \|W\|_{\Box} &:= \sup_{S,T} \left| \int_{S \times T} W \right| \\ W^{\phi}(x,y) &:= W(\phi(x),\phi(y)) \\ Cut \ distance \ \delta_{\Box}(U,W) &:= \inf\{\|U - W^{\tau}\|_{\Box} : \text{measure-preserving } \tau : [0,1] \to [0,1] \} \end{aligned}$

Homework for Lecture 1

Problem 1 Given graphs G_1 and G_2 , find a graph G such that for every F the following holds:

 $\hom(F,G) = \hom(F,G_1) \hom(F,G_2).$

Problem 2 Let $\operatorname{surj}(F, G)$ be the number of homomorphisms f from F to G such that $f : V(F) \to V(G)$ is surjective. Fix a graph F. Show that each of the functions $\operatorname{hom}(F, \cdot)$ and $\operatorname{surj}(F, \cdot)$ determines the other.

Problem 3 Let $0 . Prove that there is no graph G such that <math>t(K_2, G) = p$ and $t(C_4, G) = p^4$. [Hint: you can use Chung-Graham-Wilson's theorem.]

Problem 4 Recall that LIM consists of those functions $\phi : \mathcal{G} \to [0,1]$ for which there is a sequence of graphs (G_n) such that for every $F \in \mathcal{G}$ we have $\phi(F) = \lim_{n \to \infty} t(F, G_n)$. Prove that the set LIM is a closed subset of the product space $[0,1]^{\mathcal{G}}$.

Problem 5 Show that

$$\|W\|_{\Box} := \left| \int_{[0,1]^2} \sup_{S,T \subseteq [0,1]} W(x,y) \, \mathrm{d}x \, \mathrm{d}y \right|$$

is a norm on the vector space \mathcal{W} of kernels where a.e. equal kernels are identified.