HW-1 (Monday)
We use the Fourier transform normalized by

$$\hat{f}(\bar{s}) = \int_{\mathbb{R}^d} \hat{f}(\bar{s}) e^{-2\pi i \cdot x \cdot \bar{s}} dx,$$

 $\hat{f}(\bar{s}) = \int_{\mathbb{R}^d} \hat{f}(\bar{s}) e^{-2\pi i \cdot x \cdot \bar{s}} dx,$
 $\hat{f}(x) = \int_{\mathbb{R}^d} \hat{f}(\bar{s}) e^{2\pi i \cdot x \cdot \bar{s}} d\bar{s}.$
1. $\hat{f} \in L^2(\mathbb{R}), |\hat{f}(x)| \leq e^{-a|x|}$
 $\Rightarrow \hat{f}$ is analytic in $\{|\text{Im}(\bar{s})| \leq \frac{a}{2\pi}\}$
2.
(a) Prove the Heisenberg inequality
 $\|xf\|_2 \|\xi\hat{f}\|_2 \geq \frac{d}{4\pi} \|f\|_2^2,$ (K)
assuming that $f \in S(\mathbb{R}^d).$
Hint: Start with $\int_{=1}^d x \cdot \partial_i |f|^2 = 2 \operatorname{Re}(\nabla f \cdot x \bar{f}).$
The rest is the same as in the proof of 1D case given
in the class.
(b) Describe the functions for which the equality
 \Rightarrow ign attacins in (K).

def : Sobolev space:

3

 $H_1 := \{ f \in L^2 : \xi f \in L^2 \}, \| f \|_{H_1}^2 = \int (1 + \xi^2) | f |^2$ R

(a) Suppose $f \in H_{\perp}$. Then $\|\hat{f}\|_{L^{4}} \leq C \|f\|_{H_{\perp}}$. Conclude that functions in H_{\perp} are continuous and tend to infinite as $x \to \pm \infty$. (b) Let $\mathcal{H}:= \{f: f, f \in H_{\perp}\}, \|f\|_{\mathcal{H}}^{2} = \|f\|_{\mathcal{H}_{\perp}}^{2} + \|\hat{f}\|_{\mathcal{H}_{\perp}}^{2}$ Show that the pt evaluations $x \mapsto f(x)$ and $\xi \mapsto \hat{f}(\xi)$ are bold functionals in \mathcal{H} , and that the Schwartz space S' is dense in \mathcal{H} .

4. Prove the Heisenberg inequality $\|xf\|_{2} \cdot \|\hat{s}\hat{f}\|_{2} \ge \frac{1}{4\pi} \|f\|_{2}^{2}$, for $f \in L^{2}(\mathbb{R})$.

Hint: Put f':= [2misf], f'EL2 ('is a symbol here). You need to justify integration by part, i.e., that

 $\int_{\mathbb{R}} x(f'f + f'f) = - ||f||_{2}^{2}; \text{ the rest is similar to the case}$ when fES discussed in the clars. To justify this, approximate f by a sequence $(f_n) \subset S$ so that $\int_{D} (1 + 4\pi \tilde{s}^2) |\hat{f}_n - \hat{f}|^2 \rightarrow 0 \text{ for } n \rightarrow \infty.$

Basicato yeniscy ?