Foundations of Cryptography.

Lecture 3: Privacy-Preserving Digital Money

Anna Lysyanskaya

The Money Cycle

N

BL00002030A

RSz
BL00002030A
RS

o Ty

Merchant

The Money Cycle

Merchant

 Three protocols: Withdraw, Spend, Deposit
« Desirable properties:

- can't forge/copy money

- can't trace how cash was spent

Electronic Payments

%
b
& \ K
o3 4
| &x° <,
&

\\

\\
‘o .
\I.\. sl
i

wr; Spend $$$ w
«

* Three protocols: Wit
« Desirable properties:
- can't forge/copy Money
- can't trace how Bsh was spent

Merchant

rdl, Spend, Deposit

Ecash [Chaum82,CFN89]

%
\
92 K
o3 4
V& ¢ %5

(.1]
. =
AN

Alice

Merchant

» Unforgeability: Alice can't spend more $$ than she
withdrew
- Online ecash: each coin has a serial number,
Merchant can't deposit unless it's unspent
- Offline ecash: if Alice double-spent, can ID and
punish her after the fact
* Privacy: colluding B&M can't trace how a coin is spent.

Roadmap for This Talk

* Main idea of off-line ecash [CFN89 + CL0O2] and compact
ecash [CHLOB] v

Balancing anonymity and accountability:

- How to prevent money laundering [CHLO6]

- How to trace rogue users’ transactions

- How to implement authorized watchlists [KLN23]

Warning: there might be a pop quiz...

Main Idea of Off-Line Ecash

» Building blocks:

- digital signatures

- Ssecure two-party computation
- NIZK proofs of knowledge

- pseudorandom functions

Main Idea of Off-Line Ecash

»+ SETUP: the Bank sets up his key pair for
a digital signature scheme

- Signing key sk
- Verification key pk

Tool #1:
Digital
signature

scheme

[RSA77]

Sighature Schemes

Sighature Schemes

+ Setup: I run a setup algorithm to obtain my public

key PK and secret key SK

PK

Sighature Schemes

+ Setup: I run a setup algorithm to obtain my public
key PK and secret key SK

* Now I can sign (using SK):

- Sign(SKm) > o (denoted apy(m))

* And you can verify it

(using PK)
- Verify(PK,m,0) - Yes/No

Sighature Schemes

- Security: no adversary can forge a
signature even after seeing sigs on
messages of his choice

Secure if the prob this can hapen IS neg ible

Main Idea of Off-Line Ecash

»+ SETUP: the Bank sets up his key pair for
a digital signature scheme

- Signing key sk
- Verification key pk

Tool #1:
Digital
signature

scheme

[RSA77]

Main Idea of Off-Line Ecash

\é\/ITTDRAW a coin that will verify under the Bank's verification
ey pk

i [Alice's SK x ——

random A,B 2PC

I | G =ka(xr4y,’$)

A is the serial number

NK

p Kl‘ool #2: Secure\

2PC [Yao82]

Protocol where:

* onhe party
receives an
output
neither party
learns
anything(*)
about the

\ other's input. /

B is to prevent double-spending (TBA)

Main Idea of Off-Line Ecash

SPEND:

<": “fresh" nonce R
e.g. R=H(contract, rand)

A (the coin's serial number)

T =x+RB mod Q (double-spending equation)

NIZKPOK of (x,B,c) such that
1. T=x+RB mod Q

2. VerifySig(pk,(x,A,B),) = TRUE

fTool #3: NIZK

~

proof of knowledge

[GMR84..FLS91..]
We saw it in
Lecture 2

)

Main Idea of Off-Line Ecash

- DEPOSIT:

submit
(AR, T proof)
to the Bank

Can't Forge Money/Double-Spend

—

(Tdentify algorithm:

Suppose a coin is spent twice.

Same coinh => same A

Spent twice: two R's,
with high prob, R z R’
T=x+RBmod Q, T = x+R'Bmod G
solve for x, id and punish Alice

% k_D

r o

e R

¢/ A (the coin's serial number)
| T =x+RB mod Q (double-spending equa’rion)

Deposit: submit
(AR, T proof)
to the Bank

NIZKPOK of (x,B,c) such that
1. T=x+RB
2. VerifySig(pk,(x,A,B),) = TRUE

User Privacy

A and T are random;
proof is zero-knowledge.

% E_D

e R

A (the coin's serial number)
T =x+RB mod Q (double-spending equation)

Deposit: submit
(AR, T proof)
to the Bank

NIZKPOK of (x,B,c) such that
1. T=x+RB
2. VerifySig(pk,(x,A,B),) = TRUE

Real-Life Money (again)

im

\} <S\RLCCTIATTT

Compact Ecash

Merchants

* Algs: Setup, Withdraw, Spend, Deposit, Identify
« Withdraw: a wallet with N coins

« Spend, deposit: just one coin

« Want: complexity of protocols O(log N), not O(N)

Tools for Compact Ecash

Building blocks:

- digital signatures

- Ssecure two-party computation
- NIZK proofs of knowledge

- pseudorandom functions

Tool #4: Pseudorandom function
[GGM]: we saw it in Lecture 1

Compact Ecash: Main Idea [CHLO5]

WITHDRAW $N:

{4 [Alice's SK x ———

Random s,t
G =op(X,s.1)

2PC

#sk \

—_ R

$| A= F(i) (the coin's serial number)
T = x+RF;(i) mod Q (double-spending equ

NIZKPOK of (i,x,s,t,0) such that
1.1<i¢<N
2. A = Fyi)
3.T= X+RF1-(i)
4. VerifySig(pk,(x,s,t), o) = TRUE

aTion)

Deposit: submit
(AR, T proof)
to the Bank

Compact Ecash: Main Idea [CHLO5]

WITHDRAW $ — —

Sup

Privacy for Alice: the ZK
A and T are pseudorandom,
proof is zero-knowledhe

- ™

— —
A = F,(i) (the coin's serial number)
T = x+RF;(i) mod Q (double-spending equation)

Deposit: submit
(AR, T proof)
to the Bank

NIZKPOK of (i,x,s,t,0) such that
1.1<i<N
2. A =Fi)
3.T= X+RF1-(i)
4. VerifySig(pk,(x,s,t), o) = TRUE

Coming up soon: a POP QUIZ!

Roadmap for This Talk

 Main idea of off-line ecash [CFN89 + CLOZ] and compact
ecash [CHLOB] v % A

» Balancing anonymity and accountability:

- How to prevent money laundering [CHLO6]

- How to trace rogue users’ transactions

- How to implement authorized watchlists [KLN23]

POP QUIZ.

Each user is allowed to spend only
up to 100 coins with the Cheshire
Cat. Modify the Compact Ecash
construction so that the 101s*
spend with the Chesire Cat leads
the Bank to identify the user

Hint: a coin can have multiple serial
nhumbers

Preventing Money Laundering [CHLO6]

WITHDRAW $N:

Alice's SK x ——
s1.11,82,12 2PC

—_ R

A= F51(i), A, = Fsz(ChCShCGT,j)
“ Ty = x+RFu(i), Ts = x+RF;2(CheshCat ,j)
NIZKPOK of (i,x,s1,t1.).52,72,0) such that
1.1<i<N,1<j<100
2. Ar = Fs(i), A = Fsz(ChQShCGT,j)
3. Ty = x+RF;(i), T> = x+RF,(CheshCat,j)
4. VerifySig(pk,(x,s1,t1,52,12), o) = TRUE

Deposit: submit
(Al,Az,R,TLTz,Pf'OOf

)
to the Bank)

Cannot be done with physical cash! Was an open problem too, for a while.

Preventing Money Laundering [CHLO6]

WITHDRAW $

—

—

Privacy for Alice: the ZK
pick random A, Ty, A;, T,
are pseudorandom,
proof is zero-knowledge

N

TTOVYV TN

7

A= F51(i), A, = Fsz(ChCShCGT,J)
“ | Ty = x+RFy(i), T2 = x+RF;,(CheshCat j)
NIZKPOK of (i,x,s1,t1.).52,72,0) such that
1.1<i<N,1<)<100
2. A = Fs(i), A = Fsz(ChQShCGT,j)
3. Ty = x+RF;(i), T> = x+RF,(CheshCat,j)
4. VerifySig(pk,(x,s1,t1,52,12), o) = TRUE

P

Deposit: submit
(A;,A2 R, Ty, T, proof)
to the Bank

Cannot be done with physical cash! Was an open problem too, for a while.

POP QUIZ 2:

If you double-spend < 4 e-tokens,
these e-tokens are linked, but your
identity cannot be established. If
you double-spend 4 times, you are
identified.

Hint: use multiple Ry, ..., R,

v N

QJ—'—'IZQ Suppose spend N+4 coins

=> repeating A=F(i) for some i
(pOSSibly for i1, i2, i3, |4)

=> L pops out of repeating A
using T, T, R, R’
=> link them fogether!

=> F(i) pops out of repeating A
using ¥, Y', R, R NK

=> each overspending gives
X +1rzZy+rpZy; + r3zz = Z-Fu(i)

%—| KI r'll r'ZI [)
| A = Fo(i)
Hr;. T= L+RF1-(I)
Y = F(i)+RF,(i)

=X+ Mz, + rpz; + ry3zs + Fu(i)

NIZKPOK of (i,x,s,t,uv,Ll,z1,22,23,0) such that
1.1<i<N
2. A = Fy(i), T = L+RF(i), ¥ = Fu(i)*RF(i)
3.7 = X +1rz1+rpzp + r3zz + Fy(i)
4. VerifySig(pk,(x,s,t,u,v L, z1,25,23), 0)

POP QUIZ 3:

Construct an ecash scheme where
double-spending leads not just to
identification, but also to
traceability of past transactions
from the same wallet.

Hint: double-spending makes s
recoverable

Traceability [CHKLMO6]

WITHDRAW:

Alice's SK x

s,fuyv
o) =ka(xls /Tlu)

sk

i

SPEND $1 for the ith time:

A = F4(i)
T=x+ RFT(I)
Y = s + RF(i)

NIZKPOK of (i,x,s,t,uv,c) such that
1.1<i¢<N
2. A = F,(i), T = L+RF,(i), Y = s+RF(i)
3. VerifySig(pk,(x,s,t,u), o)

Roadmap for This Talk

 Main idea of off-line ecash [CFN89 + CLOZ] and compact
ecash [CHLOB] v % A

» Balancing anonymity and accountability:

- How to prevent money laundering [CHLO6] v

- How to trace rogue users’ transactions v

- How to implement authorized watchlists [KLN23]

Watchlists [KLN23]

WITHDRAW:

Alice's SK x ——
seeds 2PC @ \\\

c =opk(Xx,seeds Alice)

Encrypted watchlist

7 | E-coin’s info (as before)

{ Enc(name) if name is on the watchlist
Escrow = | Enc(random) otherwise
NOTE: using homomorphic encryption can compute Escro
without knowing the watchlist

NIZKPOK of (x,seeds,name,c) such that
1. E-coin was computed correctly from seeds
2. Escrow was computed correctly from name
and encrypted watchlist
3. VerifySig(pk,(x,seeds,name), c)

Roadmap for This Talk

 Main idea of off-line ecash [CFN89 + CLOZ] and compact
ecash [CHLOB] v % A

» Balancing anonymity and accountability:

- How to prevent money laundering [CHLO6] v

- How to trace rogue users’ transactions v

- How to implement authorized watchlists [KLN23] v

Conclusions

Many interesting topics, we only covered a small subset.

The Goldreich book is good reading, and you should be able to
read it on your own.

Other topics to explore: multi-party computation, two-party
computation

Some upcoming events if you are able to travel:
https://iacr.org/schools/

