ICMU Mini Course: Introduction to Cluster Algebras

Homework 1

1. Show that the mutation operation μ_{k} is an involution on the seeds, that is $\mu_{k} \circ \mu_{k}=1$.
2. Compute the exchange graph for the cluster algebra \mathcal{A}_{Q} where the quiver Q is $1 \rightarrow 2$.
3. Let Q^{op} denote the quiver obtained from a quiver Q by reversing the orientation of all of its arrows. How are the two cluster algebras \mathcal{A}_{Q} and $\mathcal{A}_{Q^{\text {op }}}$ related? Prove your claim.
4. In each case provide an example of a quiver Q that satisfies the given condition. Briefly justify your answers.
(a) Q has oriented cycles but the cluster algebra \mathcal{A}_{Q} is acyclic.
(b) Q is such that every quiver that is mutation equivalent to Q is isomorphic to Q.
(c) \mathcal{A}_{Q} is of finite mutation type but not of finite type.
(d) \mathcal{A}_{Q} is of acyclic type but not of finite mutation type.
5. Consider a recurrence defined by $z_{k-1} z_{k+1}=z_{k}^{2}+1$ with the initial condition $z_{1}=z_{2}=1$. Show that the terms of the recurrence are positive integers.

ICMU Mini Course: Introduction to Cluster Algebras

Homework 2

1. Prove that the number of clusters in a cluster algebra of type A is given by the Catalan numbers C_{n}, i.e. $C_{0}=1, C_{1}=1, C_{2}=2$ and they satisfy the recurrence $C_{n}=\sum_{i=1}^{n} C_{i-1} C_{n-i}$. What is the number of cluster variables in a cluster algebra of type A ?
2. Let Q_{T} be a quiver coming from a triangulation of a surface. What is the largest number of arrows starting/ending at a vertex of Q_{T} ? Use this to show that Q_{T} is of finite mutation type.
3. Prove that cluster algebras coming from triangulations of annuli are of acyclic type.
4. Let \mathcal{G}_{d} be a snake graph on $d \geq 1$ tiles. For each of the following families of snake graphs find and prove a formula for the number of matchings of \mathcal{G}_{d}.
(a) Every three adjacent tiles of \mathcal{G}_{d} form a straight-piece configuration.
(b) Every three adjacent tiles of \mathcal{G}_{d} form a zig-zag configuration.
5. Consider a triangulation T of the surface (S, M). Let γ be the red arc as in the picture. Find the cluster variable x_{γ} corresponding to the arc γ in the cluster algebra $\mathcal{A}_{Q_{T}}$.

