ICMU Mini Course: Introduction to Cluster Algebras

Homework 1

- 1. Show that the mutation operation μ_k is an involution on the seeds, that is $\mu_k \circ \mu_k = 1$.
- 2. Compute the exchange graph for the cluster algebra \mathcal{A}_Q where the quiver Q is $1 \to 2$.
- 3. Let Q^{op} denote the quiver obtained from a quiver Q by reversing the orientation of all of its arrows. How are the two cluster algebras \mathcal{A}_Q and $\mathcal{A}_{Q^{\text{op}}}$ related? Prove your claim.
- 4. In each case provide an example of a quiver Q that satisfies the given condition. Briefly justify your answers.
 - (a) Q has oriented cycles but the cluster algebra \mathcal{A}_Q is acyclic.
 - (b) Q is such that every quiver that is mutation equivalent to Q is isomorphic to Q.
 - (c) \mathcal{A}_Q is of finite mutation type but not of finite type.
 - (d) \mathcal{A}_Q is of acyclic type but not of finite mutation type.
- 5. Consider a recurrence defined by $z_{k-1}z_{k+1} = z_k^2 + 1$ with the initial condition $z_1 = z_2 = 1$. Show that the terms of the recurrence are positive integers.

ICMU Mini Course: Introduction to Cluster Algebras

Homework 2

- 1. Prove that the number of clusters in a cluster algebra of type A is given by the Catalan numbers C_n , i.e. $C_0 = 1, C_1 = 1, C_2 = 2$ and they satisfy the recurrence $C_n = \sum_{i=1}^n C_{i-1}C_{n-i}$. What is the number of cluster variables in a cluster algebra of type A?
- 2. Let Q_T be a quiver coming from a triangulation of a surface. What is the largest number of arrows starting/ending at a vertex of Q_T ? Use this to show that Q_T is of finite mutation type.
- 3. Prove that cluster algebras coming from triangulations of annuli are of acyclic type.
- 4. Let \mathcal{G}_d be a snake graph on $d \geq 1$ tiles. For each of the following families of snake graphs find and prove a formula for the number of matchings of \mathcal{G}_d .
 - (a) Every three adjacent tiles of \mathcal{G}_d form a straight-piece configuration.
 - (b) Every three adjacent tiles of \mathcal{G}_d form a zig-zag configuration.
- 5. Consider a triangulation T of the surface (S, M). Let γ be the red arc as in the picture. Find the cluster variable x_{γ} corresponding to the arc γ in the cluster algebra \mathcal{A}_{Q_T} .

