On discrete, continuous and arithmetic aspects of Fourier uncertainty

Alex losevich

September 2024: LMS-Lecture Series in Ukraine

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 1/74

Dedication

• This talk is dedicated to the memory of Yuliia Zdanovska and other victims of the ongoing Russian invasion of Ukraine.

Dedication

• This talk is dedicated to the memory of Yuliia Zdanovska and other victims of the ongoing Russian invasion of Ukraine.

Yuliia Zdanovska 2000-2022

Restriction Conjecture

Conjecture

(Restriction conjecture) The restriction conjecture says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}} |\widehat{f}(\xi)|^r d\sigma_S(\xi)\right)^{\frac{1}{r}} \leq C_{p,r} \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

٩

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 3/74

Restriction Conjecture

Conjecture

(Restriction conjecture) The restriction conjecture says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}}\left|\widehat{f}(\xi)\right|^{r}d\sigma_{S}(\xi)\right)^{\frac{1}{r}} \leq C_{p,r}\left(\int_{\mathbb{R}^{d}}\left|f(x)\right|^{p}dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

۲

• This conjecture is solved in two dimensions and in spite of a lot of brilliant work by Bourgain, Guth, Ou, Stein, Tao, Tomas, Wang and many others, the problem is still open in higher dimensions.

Suppose that A is a compact set in ℝ^d, d ≥ 2, |A| > 0, and 1_A(ξ) is known except for ξ ∈ S^δ, the annulus of radius 1 and thickness δ (small). Can we recover 1_A(x) exactly?

- Suppose that A is a compact set in ℝ^d, d ≥ 2, |A| > 0, and 1_A(ξ) is known except for ξ ∈ S^δ, the annulus of radius 1 and thickness δ (small). Can we recover 1_A(x) exactly?
- We have

$$1_A(x) = \int e^{2\pi i x \cdot \xi} \widehat{1}_A(\xi) d\xi$$

- Suppose that A is a compact set in ℝ^d, d ≥ 2, |A| > 0, and Î_A(ξ) is known except for ξ ∈ S^δ, the annulus of radius 1 and thickness δ (small). Can we recover 1_A(x) exactly?
- We have

$$1_A(x) = \int e^{2\pi i x \cdot \xi} \widehat{1}_A(\xi) d\xi$$

۲

$$= \int_{\xi \notin S^{\delta}} + \int_{\xi \in S^{\delta}} = I(x) + II(x).$$

- Suppose that A is a compact set in ℝ^d, d ≥ 2, |A| > 0, and Î_A(ξ) is known except for ξ ∈ S^δ, the annulus of radius 1 and thickness δ (small). Can we recover 1_A(x) exactly?
- We have

$$1_A(x) = \int e^{2\pi i x \cdot \xi} \widehat{1}_A(\xi) d\xi$$

۲

$$= \int_{\xi \notin S^{\delta}} + \int_{\xi \in S^{\delta}} = I(x) + II(x).$$

• By assumption, we have no information about II(x), so we must estimate it and hope for the best.

Applying the conjectured restriction inequality

• By Holder, if the restriction theorem holds with exponents (p, r), then

$$|II(x)| \leq |S^{\delta}| \cdot \left(\frac{1}{|S^{\delta}|} \int_{S^{\delta}} |\widehat{1}_{\mathcal{A}}(\xi)|^{r} d\xi\right)^{\frac{1}{r}} \leq C_{p,r} \cdot |S^{\delta}| \cdot |\mathcal{A}|^{\frac{1}{p}}.$$

米 原 トーイ 原 ト

Applying the conjectured restriction inequality

• By Holder, if the restriction theorem holds with exponents (p, r), then

$$|II(x)| \leq |S^{\delta}| \cdot \left(\frac{1}{|S^{\delta}|} \int_{S^{\delta}} |\widehat{1}_{\mathcal{A}}(\xi)|^{r} d\xi\right)^{\frac{1}{r}} \leq C_{p,r} \cdot |S^{\delta}| \cdot |\mathcal{A}|^{\frac{1}{p}}.$$

• If the right hand side is $<\frac{1}{2}$, i.e if $|A| \le \delta^{-p}$ with suitable constants, then we can take the modulus of I(x) and round it up to 1, or down to 0, whichever is closer, and thus recover $1_A(x)$ is exactly.

Applying the conjectured restriction inequality

• By Holder, if the restriction theorem holds with exponents (p, r), then

$$|II(x)| \leq |S^{\delta}| \cdot \left(\frac{1}{|S^{\delta}|} \int_{S^{\delta}} |\widehat{1}_{\mathcal{A}}(\xi)|^{r} d\xi\right)^{\frac{1}{r}} \leq C_{p,r} \cdot |S^{\delta}| \cdot |\mathcal{A}|^{\frac{1}{p}}.$$

- If the right hand side is $<\frac{1}{2}$, i.e if $|A| \le \delta^{-p}$ with suitable constants, then we can take the modulus of I(x) and round it up to 1, or down to 0, whichever is closer, and thus recover $1_A(x)$ is exactly.
- For any *r*, the restriction theorem always holds for *p* = 1, but according to the restriction conjecture, it holds for any

$$p < rac{2d}{d+1},$$

which gives us a much less stringent recovery condition.

Finite Signals and Discrete Fourier transform

• Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 6/74

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of f is transmitted, where

$$\widehat{f}(m) = N^{-rac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{rac{2\pi i t}{N}}.$$

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f : \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of f is transmitted, where

$$\widehat{f}(m) = N^{-rac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{rac{2\pi i t}{N}}.$$

• Fourier Inversion says that we can recover the signal by using the Fourier inversion:

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m).$$

Exact recovery problem

• The basic question is, can we recover *f* **exactly** from its discrete Fourier transforms if

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

Exact recovery problem

• The basic question is, can we recover *f* **exactly** from its discrete Fourier transforms if

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

• The answer turns out to be <u>YES</u> if f is supported in $E \subset \mathbb{Z}_N^d$, and

$$|E|\cdot|S|<\frac{N^d}{2},$$

with the main tool being the Fourier Uncertainty Principle.

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

化原本 化原本

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

• (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

|▲ 唐 ▶ | ▲ 唐 ▶ |

э

and

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

• (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

and

(Plancherel)

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2 = \sum_{x\in\mathbb{Z}_N^d} |f(x)|^2.$$

医原子 医原子

э

Proof of Fourier Inversion

• We have

 $N^{-\frac{d}{2}} \sum \chi(x \cdot m) \widehat{f}(m)$ $m \in \mathbb{Z}_N^d$

化原本 化原本

э

Proof of Fourier Inversion

• We have

$$N^{-\frac{d}{2}}\sum_{m\in\mathbb{Z}_N^d}\chi(x\cdot m)\widehat{f}(m)$$

$$= N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) N^{-\frac{d}{2}} \sum_{y \in \mathbb{Z}_N^d} \chi(-y \cdot m) f(y)$$

크

4 E 🕨 4 E 🕨

Proof of Fourier Inversion

We have $N^{-\frac{d}{2}} \sum \chi(x \cdot m) \widehat{f}(m)$ $m \in \mathbb{Z}_{N}^{d}$ ۲ $= N^{-\frac{d}{2}} \sum \chi(x \cdot m) N^{-\frac{d}{2}} \sum \chi(-y \cdot m) f(y)$ $m \in \mathbb{Z}_N^d$ $v \in \mathbb{Z}_{N}^{d}$ ۲ $f(y) = \sum f(y) N^{-d} \sum \chi((x-y) \cdot m) = f(x)$ $v \in \mathbb{Z}_{N}^{d}$ $m \in \mathbb{Z}_{N}^{d}$ by orthogonality.

米 原 トーイ 原 ト

• We have

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 10/74

• We have

٠

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

* E • * E •

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 10/74

• We have

٠

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

$$=\sum_{x,y\in\mathbb{Z}_N^d}\overline{f(x)}f(y)N^{-d}\sum_{m\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)$$

* E • * E •

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 10/74

• We have

۲

٠

$$\sum_{m\in\mathbb{Z}_N^d} \left|\widehat{f}(m)\right|^2$$

$$=\sum_{m\in\mathbb{Z}_N^d}N^{-d}\sum_{x,y\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)\overline{f(x)}f(y)$$

$$=\sum_{x,y\in\mathbb{Z}_N^d}\overline{f(x)}f(y)N^{-d}\sum_{m\in\mathbb{Z}_N^d}\chi((x-y)\cdot m)$$

 $=\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2.$

크

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 10 / 74

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

.≣. ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 11/74

л

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

4 E 🕨 4 E 🕨

• We have
$$\sum_{m} |\widehat{S}(m)|^{4} =$$

= $N^{-2d} \sum_{x,y,x',y} \chi(z \cdot (x + y - x' - y')) \mathbf{1}_{S}(x) \mathbf{1}_{S}(y) \mathbf{1}_{S}(x') \mathbf{1}_{S}(y')$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 11/74

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

• We have
$$\sum_{m} |\widehat{S}(m)|^{4} =$$

= $N^{-2d} \sum_{x,y,x',y} \chi(z \cdot (x + y - x' - y')) \mathbb{1}_{S}(x) \mathbb{1}_{S}(y) \mathbb{1}_{S}(x') \mathbb{1}_{S}(y')$

 $= N^{-d}|\{(x, y, x', y') \in S^4 : x + y = x' + y'\}| = N^{-d}\Lambda(S), \text{ i.e.}$

化原本 化原本

• Suppose that S satisfies

$$|\widehat{1}_{\mathcal{S}}(m)| \leq C_{\textit{Fourier}} N^{-rac{d}{2}} \cdot |\mathcal{S}|^{rac{1}{2}} ext{ for } m
eq \mathbf{0}.$$

• We have
$$\sum_{m} |\widehat{S}(m)|^{4} =$$

$$= N^{-2d} \sum_{x,y,x',y} \chi(z \cdot (x + y - x' - y')) \mathbf{1}_{S}(x) \mathbf{1}_{S}(y) \mathbf{1}_{S}(x') \mathbf{1}_{S}(y')$$
•
$$= N^{-d} |\{(x, y, x', y') \in S^{4} : x + y = x' + y'\}| = N^{-d} \Lambda(S), \text{ i.e.}$$
•
$$\Lambda(S) = |\{(x, y, x', y') \in S^{4} : x + y = x' + y'\}| = N^{d} \sum_{m} |\widehat{\mathbf{1}}_{S}(m)|^{4}$$

From Fourier decay to additive energy (continued)

• By assumption, the right-hand side is bounded by

$$N^d \cdot C_{Fourier}^2 \cdot N^{-d} \cdot |S| \cdot \sum_{z} |\widehat{1}_{S}(m)|^2.$$

化原本 化原本

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 12/74

From Fourier decay to additive energy (continued)

• By assumption, the right-hand side is bounded by

$$N^d \cdot C_{Fourier}^2 \cdot N^{-d} \cdot |S| \cdot \sum_{z} |\widehat{1}_{\mathcal{S}}(m)|^2.$$

• By Plancherel, this expression equals

$$C_{Fourier}^2 \cdot |S|^2$$
,

from which we conclude that

$$\frac{\Lambda(S)}{|S|^2} \le C_{Fourier}^2.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 12/74

An elementary point of view: setup

• Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in *S* ⊂ Z^d_N are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

An elementary point of view: setup

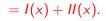
- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in *S* ⊂ Z^d_N are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

$$= N^{-\frac{d}{2}} \sum_{m \notin S} \chi(x \cdot m) \widehat{1}_E(m) + N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{1}_E(m)$$

An elementary point of view: direct estimation

٠



-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 14/74

An elementary point of view: direct estimation

$$= I(x) + II(x).$$

• By the triangle inequality,

۲

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 14/74

An elementary point of view: direct estimation

$$= I(x) + II(x).$$

• By the triangle inequality,

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

• Since we know nothing about *S*, the best we can do is assume that the quantity above is small.

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot|S|<\frac{N^d}{2}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 15/74

• If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot|S|<\frac{N^d}{2}.$$

• But what happens if we consider general signals?

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 16 / 74

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d.$

• Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

 $|supp(h)| \cdot |supp(\hat{h})| \ge N^d.$

- Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.
- If f cannot be recovered uniquely, then there exists a signal g : Z^d_N → C such that g also has |supp(f)| non-zero entries,

 $\widehat{f}(m) = \widehat{g}(m)$ for $m \notin S$,

and f is not identically equal to g.

Uncertainty Principle \rightarrow Unique Recovery

 Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.

Uncertainty Principle \rightarrow Unique Recovery

- Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.
- By the Uncertainty Principle, we must have

$$|supp(f)| \cdot |S| \geq \frac{N^d}{2}.$$

Uncertainty Principle \rightarrow Unique Recovery

- Let h = f − g. It is clear that h has at most |S| non-zero entries, and h has at most 2|supp(f)| non-zero entries.
- By the Uncertainty Principle, we must have

$$|supp(f)| \cdot |S| \geq \frac{N^d}{2}.$$

• Therefore, if we assume that

$$|supp(f)| \cdot |S| < \frac{N^d}{2},$$

we must have h = 0, and hence the recovery is *unique*.

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 18 / 74

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

• Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} \mathbf{1}_{\mathcal{S}^{\perp}}(m).$$

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} \mathbf{1}_{\mathcal{S}^{\perp}}(m).$$

• Since $|S| \cdot |S^{\perp}| = N^d$, the classical uncertainty principle is sharp.

• Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_N^d , $1 \le k \le d-1$.

Then

$$\widehat{1}_{\mathcal{S}}(m) = N^{-\frac{d}{2}+k} 1_{\mathcal{S}^{\perp}}(m).$$

• Since $|S| \cdot |S^{\perp}| = N^d$, the classical uncertainty principle is sharp.

• We are going to see that in the presence of non-trivial restriction estimates, we can do much better. We are also going to see that non-trivial restriction estimates "typically" hold.

Proof of the classical uncertainty principle

• We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

ほ ト イ ヨ ト

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 19 / 74

Proof of the classical uncertainty principle

We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

• By the triangle inequality,

$$|h(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot N^{-rac{d}{2}} \cdot \sum_{x \in \mathbb{Z}_N^d} |h(x)|.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 19 / 74

Proof of the classical uncertainty principle

• We have

$$h(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m).$$

By the triangle inequality,

$$|h(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot N^{-rac{d}{2}} \cdot \sum_{x \in \mathbb{Z}_N^d} |h(x)|.$$

• Summing both sides over $x \in E$ and cancelling the L^1 norms of h on both sides, we obtain

 $|E| \cdot |S| \ge N^d.$

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \leq p \leq q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-\frac{d}{2}}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}.$$

化原本 化原本

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \le p \le q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-\frac{d}{2}}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}$$

• We shall need the following "universal" restriction theorem.

Theorem

(A.I. and A. Mayeli) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and let S be a subset of \mathbb{Z}_N^d . Then

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq \left(\frac{|S|}{N^{\frac{d}{2}}}\right)^{-\frac{1}{2}} \cdot \left(\max_{U\subset S}\frac{\Lambda(U)}{|U|^{2}}\right)^{\frac{1}{4}} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x\in\mathbb{Z}_{N}^{d}}\left|f(x)\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 20 / 74

From restriction directly to uncertainty

• Before proving the universal restriction theorem, we are going to develop a simple mechanism for going directly from restriction to uncertainty, where the more non-trivial the restriction estimate becomes, the better uncertainty principle we obtain. More eleborate versions of this approach will be developed a bit later.

From restriction directly to uncertainty

• Before proving the universal restriction theorem, we are going to develop a simple mechanism for going directly from restriction to uncertainty, where the more non-trivial the restriction estimate becomes, the better uncertainty principle we obtain. More eleborate versions of this approach will be developed a bit later.

Theorem (Uncertainty Principle via Restriction Theory – A.I. & A.Mayeli, 2023)

Suppose that $f, \hat{f} : \mathbb{Z}_N^d \to \mathbb{C}$, with f supported in $E \subset \mathbb{Z}_N^d$, and \hat{f} supported in $S \subset \mathbb{Z}_N^d$. Suppose S satisfies the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}}.$$

٠

Proof of Uncertainty via Restriction

• Suppose that f is supported in a set E, and \hat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

Proof of Uncertainty via Restriction

Suppose that f is supported in a set E, and f is supported in a set S.
 Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

• By Holder's inequality,

$$|f(x)| \leq N^{-rac{d}{2}} \cdot |S| \cdot \left(rac{1}{|S|} \sum_{m \in S} \left|\widehat{f}(m)\right|^q\right)^{rac{1}{q}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 22 / 74

Proof of Uncertainty via Restriction

Suppose that f is supported in a set E, and f is supported in a set S.
 Then by the Fourier Inversion Formula and the support condition,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

By Holder's inequality,

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S| \cdot \left(\frac{1}{|S|} \sum_{m \in S} |\widehat{f}(m)|^q\right)^{\frac{1}{q}}.$$

• By the restriction bound assumption, this expression is bounded by

$$|S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^p\right)^{\frac{1}{p}},$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 22/74

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 23 / 74

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

• Putting everything together, we see that

$$|f(x)| \leq |S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 23 / 74

Proof of Uncertainty Principle via Restriction I (continued)

• and by the support assumption, this quantity is equal to

$$|S| \cdot C_{p,q} \cdot N^{-\frac{d}{2}} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

• Putting everything together, we see that

$$|f(x)| \leq |S| \cdot C_{p,q} \cdot N^{-d} \cdot \left(\sum_{x \in E} |f(x)|^p\right)^{\frac{1}{p}}.$$

Raising both sides to the power of p, summing over E, and dividing both sides of the resulting inequality by ∑_{x∈E} |f(x)|^p, we obtain

$$|S|^p \cdot |E| \cdot C^p_{p,q} \ge N^{dp}.$$

Proof of Uncertainty Principle via Restriction I (finale)

• or, equivalently,

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}},$$

as desired.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 24 / 74

Proof of Uncertainty Principle via Restriction I (finale)

or, equivalently,

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}},$$

as desired.

• This completes the proof of the Uncertainty Principle via Restriction Theory.

An additive energy uncertainty principle

• It would be very convenient to work out a version of the additive energy uncertainty principle purely in terms of the additive energy of E = supp(f) and $S = supp(\hat{f})$. This is where we not turn our attention.

An additive energy uncertainty principle

• It would be very convenient to work out a version of the additive energy uncertainty principle purely in terms of the additive energy of E = supp(f) and $S = supp(\hat{f})$. This is where we not turn our attention.

Theorem

(K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack) Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with supp(f) = E and $supp(\widehat{f}) = S$. Then for any $\alpha \in [0, 1]$,

$$\mathsf{N}^d \ \leq \Lambda^{rac{lpha}{3}}(E) \Lambda^{rac{1-lpha}{3}}(S) |E|^{1-lpha} |S|^lpha.$$

Proof of the additive energy uncertainty principle

• We have

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

∋ ► < ∃ ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 26 / 74

Proof of the additive energy uncertainty principle

• We have

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

• It follows that

$$|f(x)| \leq N^{-rac{d}{2}} \cdot |S|^{rac{3}{4}} \cdot \left(\sum_{m \in \mathbb{Z}_N^d} |\widehat{f}(m)|^4\right)^{rac{1}{4}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 26 / 74

• We have

$$\sum_{m\in S} |\widehat{f}(m)|^4$$

$= N^{-2d} \sum_{m \in \mathbb{Z}_N^d} \sum_{x,y,x',y' \in E} \chi((x+y-x'-y') \cdot m)\overline{f(x)f(y)}f(x')f(y')$

ト くほト くほト

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 27 / 74

• We have

٠

$$\sum_{m \in S} |\widehat{f}(m)|^4$$
$$= N^{-2d} \sum_{m \in \mathbb{Z}_N^d \times, y, x', y' \in E} \chi((x + y - x' - y') \cdot m) \overline{f(x)f(y)} f(x') f(y')$$

$$= N^{-d} \sum_{x+y=x'+y';x,y,x',y'\in E} \overline{f(x)f(y)}f(x')f(y')$$

4 E 🕨 4 E 🕨

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 27 / 74

• We have

۵

$$\sum_{m \in S} |\widehat{f}(m)|^4$$
$$= N^{-2d} \sum_{m \in \mathbb{Z}_N^d} \sum_{x, y, x', y' \in E} \chi((x + y - x' - y') \cdot m) \overline{f(x)f(y)} f(x')f(y')$$

$$= N^{-d} \sum_{x+y=x'+y'; x,y,x',y'\in E} \overline{f(x)f(y)}f(x')f(y')$$

$$\leq N^{-d} \cdot \Lambda(E) \cdot ||f||^4_{L^{\infty}(E)}$$

化原本 化原本

э

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 28 / 74

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

• Taking the maximum over $x \in E$ and cancelling the $L^{\infty}(E)$ norms, we obtain

 $N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 28 / 74

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

Taking the maximum over x ∈ E and cancelling the L[∞](E) norms, we obtain

$$N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$$

• Equivalently,

 $N^d \leq \Lambda^{\frac{1}{3}}(E) \cdot |S|.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 28 / 74

• Putting everything together, we see that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{3}{4}} \cdot N^{-\frac{d}{4}} \cdot \Lambda^{\frac{1}{4}}(E) \cdot ||f||_{L^{\infty}(E)}.$$

• Taking the maximum over $x \in E$ and cancelling the $L^{\infty}(E)$ norms, we obtain

$$N^{\frac{3d}{4}} \leq \Lambda^{\frac{1}{4}}(E) \cdot |S|^{\frac{3}{4}}.$$

Equivalently,

$$N^d \leq \Lambda^{\frac{1}{3}}(E) \cdot |S|.$$

• Reversing the roles of E and S, we obtain

 $N^d \leq \Lambda^{\frac{1}{3}}(S) \cdot |E|$, which completes the proof.

Bourgain's Λ_q theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, ϕ_1, \ldots, ϕ_n are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}$, q > 2,

$$\left\| \left\| \sum_{i \in S} a_i \phi_i \right\|_{L^q(G)} \leq C(q) \cdot \left(\sum_{i \in S} |a_i|^2 \right)^{\frac{1}{2}},\right\|$$

where C(q) depends only on q.

Bourgain's Λ_q theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, ϕ_1, \ldots, ϕ_n are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}$, q > 2,

$$\left\| \left\| \sum_{i \in S} a_i \phi_i \right\| \right\|_{L^q(G)} \leq C(q) \cdot \left(\sum_{i \in S} |a_i|^2 \right)^{\frac{1}{2}},$$

where C(q) depends only on q.

• As we shall see, this result has a beautiful built-in uncertainty principle.

Bourgain's Λ_q theorem

• It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if $f : \mathbb{Z}_N^d \to \mathbb{C}$ and \hat{f} is supported in S, then for a "generic" set of size $\approx N^{\frac{2d}{q}}$, $2 < q < \infty$,

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q\right)^{\frac{1}{q}}\leq \mathcal{K}_q(S)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2\right)^{\frac{1}{2}},$$

with $K_q(S)$ independent of N.

Bourgain's Λ_q theorem

It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if f : Z^d_N → C and f is supported in S, then for a "generic" set of size ≈ N^{2d/q}, 2 < q < ∞,

$$\left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q
ight)^rac{1}{q}\leq \mathcal{K}_q(S) \left(rac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2
ight)^rac{1}{2},$$

with $K_q(S)$ independent of N.

 It is not difficult to see that this inequality implies that the support of *f* must be a positive proportion of Z^d_N.

• Suppose that S is generic, as in Bourgain's theorem.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 31 / 74

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \hat{f} is supported in S. Bourgain's theorem implies that

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \hat{f} is supported in S. Bourgain's theorem implies that

$$N^{-\frac{d}{q}} \cdot |E|^{\frac{1}{q}} \left(\frac{1}{|E|} \sum_{x \in E} |f(x)|^{q} \right)^{\frac{1}{q}}$$
$$\leq K_{q}(S) N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} \left(\frac{1}{|E|} \sum_{x \in E} |f(x)|^{2} \right)^{\frac{1}{2}}.$$

• It follows that

$$|E| \geq \frac{N^d}{\left(K_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 32 / 74

It follows that

$$|E| \geq \frac{N^d}{\left(\mathcal{K}_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}$$

• It follows that if \hat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, then f is supported on a positive proportion of \mathbb{Z}_N^d .

It follows that

$$|E| \geq \frac{N^d}{\left(\mathcal{K}_q(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}$$

• It follows that if \hat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, then f is supported on a positive proportion of \mathbb{Z}_N^d .

• We conclude that if we send the Fourier transform of a signal f supported on a set of size $o(N^d)$, and the frequencies in $S \subset \mathbb{Z}_N^d$ satisfying a Λ_q , q > 2, inequality are missing, we can recover f exactly and uniquely with very high probability.

• Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.

- E - - E -

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 33 / 74

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

• We may discuss the continuous case in more detail later in these lectures.

- Fedja Nazarov (1993) proved the following beautiful inequality, which was generalized to higher dimension (under additional assumptions) by Philippe Jaming and others.
- Let $E, S \subset \mathbb{R}$ have finite measure. Then there exists a constants c > 0 such that

$$||f||_{L^{2}(\mathbb{R})} \leq e^{c|E||S|} \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})} \right).$$

- We may discuss the continuous case in more detail later in these lectures.
- For the moment we immerse ourselves back in the world of finite signals.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 33 / 74

Annihilating pairs: Ghobber and Jaming

• Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Ghobber and Jaming proved in 2011 that if $E, S \subset \mathbb{Z}_N^d$, $|E| \cdot |S| < N^d$, then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right).$$

Annihilating pairs: Ghobber and Jaming

• Let $f : \mathbb{Z}_N^d \to \mathbb{C}$. Ghobber and Jaming proved in 2011 that if $E, S \subset \mathbb{Z}_N^d$, $|E| \cdot |S| < N^d$, then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right).$$

• Observe that this result easily implies the classical uncertainty principle since if f is supported in E, \hat{f} is supported in S, and

$$|E|\cdot|S| < N^d,$$

then the right hand side of the inequality above is 0. Hence the left hand side is also 0 and the uncertainty principle is established.

Proof of the Ghobber-Jaming result

• We have

$$\begin{aligned} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{aligned}$$

4 E 🕨 4 E 🕨

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 35 / 74

Proof of the Ghobber-Jaming result

• We have

$$\begin{aligned} |\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{aligned}$$

• On the other hand,

$$||\widehat{\mathbf{1}_E f}||_{L^2(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^2(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^2(S)}$$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 35 / 74

Proof of the Ghobber-Jaming result

We have

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||f||_{L^{1}(E)} \\ &\leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}} \cdot ||f||_{L^{2}(E)}. \end{split}$$

On the other hand,

$$||\widehat{\mathbf{1}_E f}||_{L^2(S^c)} \ge ||\widehat{\mathbf{1}_E f}||_{L^2(\mathbb{Z}_N^d)} - ||\widehat{\mathbf{1}_E f}||_{L^2(S)}$$

 $\geq ||f||_{L^{2}(E)} \left(1 - N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot |E|^{\frac{1}{2}}\right).$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 35 / 74

• We are almost ready to drive for the finish line. By the triangle inequality,

 $||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$

• We are almost ready to drive for the finish line. By the triangle inequality,

$$||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$$

• $\leq ||\widehat{1_E f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{Nd}}} + ||f||_{L^2(E^c)}$

• We are almost ready to drive for the finish line. By the triangle inequality,

$$||f||_{L^2(\mathbb{Z}_N^d)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}$$

•

$$\leq ||\widehat{1_E f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^d}}} + ||f||_{L^2(E^c)}$$
•

$$= ||\widehat{f} - \widehat{1_{E^c} f}||_{L^2(S^c)} \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^d}}} + ||f||_{L^2(E^c)}$$

۲

$$\leq \left(||\widehat{f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})} \right) \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}} + ||f||_{L^{2}(E^{c})}$$

∋ ► < ∃ ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 37 / 74

$$\leq \left(||\widehat{f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})} \right) \cdot \frac{1}{1 - \sqrt{\frac{|E||S|}{N^{d}}}} + ||f||_{L^{2}(E^{c})}$$

$$\left(1+\frac{1}{1-\sqrt{\frac{|E||S|}{N^d}}}\right)\cdot\left(||f||_{L^2(E^c)}+||\widehat{f}||_{L^2(S^c)}\right),$$

and the proof is complete.

۲

۲

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 37 / 74

Annihilating pairs and structure of sets

• Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.

Annihilating pairs and structure of sets

- Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.
- The following is a recent result due to A.I., P. Jaming and A. Mayeli. Suppose that a (p,q) Fourier restriction estimate holds for $S \subset \mathbb{Z}_N^d$, $1 \le p \le 2 \le q$, with norm $C_{p,q}$. Then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{C_{\rho,q}^{2}|E|^{\frac{2-\rho}{p}}|S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

Annihilating pairs and structure of sets

- Just as we were able prove a stronger uncertainty principle in the presence of limited additive structure, we can do the same in the case of annihilating pairs inequalities.
- The following is a recent result due to A.I., P. Jaming and A. Mayeli. Suppose that a (p,q) Fourier restriction estimate holds for $S \subset \mathbb{Z}_N^d$, $1 \le p \le 2 \le q$, with norm $C_{p,q}$. Then

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{1}{1 - \sqrt{\frac{C_{p,q}^{2}|E|^{\frac{2-p}{p}}|S|}{N^{d}}}}\right) \cdot \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

provided that

$$|E|^{\frac{2-p}{p}}|S|<\frac{N^d}{C_{p,q}^2}.$$

 If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for S,

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{|E|^{\frac{1}{2} - \frac{1}{q'}}}{1 - \left(\frac{|S||E|^{\frac{(q'-p)q}{q'p}}C_{p,q}^{q}}{N^{d}}\right)^{\frac{1}{q}}}\right) \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

化原本 化原本

э

 If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for S,

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq \left(1 + \frac{|E|^{\frac{1}{2} - \frac{1}{q'}}}{1 - \left(\frac{|S||E|^{\frac{(q'-p)q}{q'p}}C_{p,q}^{q}}{N^{d}}\right)^{\frac{1}{q}}}\right) \left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right),$$

provided that

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot|S|<\frac{N^d}{C^q_{p,q}}.$$

4 E 🕨 4 E 🕨

Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction assumption,

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &= |S|^{\frac{1}{2}} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(\mu_{S})} \leq |S|^{\frac{1}{2}} \|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(\mu_{S})} \\ &\leq |S|^{\frac{1}{2}} \cdot C_{p,q} N^{-\frac{d}{2}} \|f\|_{L^{p}(E)} \end{split}$$

化原本 化原本

э

by assumption.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 40/74

Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction assumption,

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S)} &= |S|^{\frac{1}{2}} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(\mu_{S})} \leq |S|^{\frac{1}{2}} \|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(\mu_{S})} \\ &\leq |S|^{\frac{1}{2}} \cdot C_{p,q} N^{-\frac{d}{2}} \|f\|_{L^{p}(E)} \end{split}$$

by assumption.

• By Holder's inequality, this quantity is bounded by

$$C_{p,q}|S|^{\frac{1}{2}}N^{-\frac{d}{2}}|E|^{\frac{2-p}{2p}}||f||_{L^{2}(E)} = \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}||f||_{L^{2}(E)}.$$

医水原医 化原因

• On the other hand,

$$\begin{split} |\widehat{\mathbf{1}_{E}f}||_{L^{2}(S^{c})} &\geq ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(\mathbb{Z}_{N}^{d})} - ||\widehat{\mathbf{1}_{E}f}||_{L^{2}(S)} \\ &\geq \left(1 - \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}\right) ||f||_{L^{2}(E)}. \end{split}$$

We are now ready for the conclusion of the proof. We have

$$||f||_{L^{2}(\mathbb{Z}_{N}^{d})} \leq ||f||_{L^{2}(E)} + ||f||_{L^{2}(E^{c})}$$
$$\leq \left(1 - \sqrt{\frac{C_{p,q}^{2}|S||E|^{\frac{2-p}{p}}}{N^{d}}}\right)^{-1} ||\widehat{1_{E}f}||_{L^{2}(S^{c})} + ||f||_{L^{2}(E^{c})}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 41/74

• We are left to unravel the quantity $||\widehat{1_E f}||_{L^2(S^c)}$. We have

$$\begin{split} \|\widehat{\mathbf{1}_{E}f}\|_{L^{2}(S^{c})} &= \|\mathbf{1}_{S^{c}}\widehat{f} - \mathbf{1}_{S^{c}}\widehat{\mathbf{1}_{E^{c}}f}\|_{L^{2}(\mathbb{Z}_{N}^{d})} \\ &\leq \|\widehat{f}\|_{L^{2}(S^{c})} + \|f\|_{L^{2}(E^{c})}. \end{split}$$

Plugging this back into above, we have

 $||f||_{L^2(\mathbb{Z}_N^d)} \leq$

$$\leq \left(1 - \sqrt{\frac{C_{p,q}^2 |S||E|^{\frac{2-p}{p}}}{N^d}}\right)^{-1} \left(||\widehat{f}||_{L^2(S^c)} + ||f||_{L^2(E^c)}\right) + ||f||_{L^2(E^c)}$$

and the case $1 \le p \le 2 \le q$ is established.

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$\|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(S)} \leq |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} \|f\|_{L^{p}(E)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/74

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$||\widehat{1_E f}||_{L^q(S)} \le |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} ||f||_{L^p(E)}$$

$$\leq |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}||f||_{L^{2}(E)}.$$

- E - - E -

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/74

۵

• We now handle the case $1 \le p \le q \le 2$. By assumption, we have

$$||\widehat{1_E f}||_{L^q(S)} \le |S|^{\frac{1}{q}} C_{p,q} N^{-\frac{d}{2}} ||f||_{L^p(E)}$$

$$\leq |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}||f||_{L^{2}(E)}.$$

Lemma (Hausdorff-Young inequality)

۵

Suppose that $f:\mathbb{Z}_N^d\to\mathbb{C}$ and $1\leq p\leq 2.$ Then

$$||\widehat{f}||_{L^{p'}(\mathbb{Z}_N^d)} \leq N^{-\frac{d}{2}\left(\frac{2-p}{p}\right)}||f||_{L^p(\mathbb{Z}_N^d)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 43/74

• The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.

- The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.
- Using Hausdorff-Young, we have

$$\left\|\widehat{\mathbf{1}_{E}f}\right\|_{L^{q}(\mathbb{Z}_{N}^{d})} \geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}\left\|f\right\|_{L^{q'}(E)}$$

- The case p = 1 follows by the triangle inequality and the definition of the Fourier transform. The case p = 2 is Plancherel. The result follows by Riesz-Thorin interpolation theorem.
- Using Hausdorff-Young, we have

$$\left\|\widehat{\mathbf{1}_{E}f}\right\|_{L^{q}(\mathbb{Z}_{N}^{d})} \geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}\left\|f\right\|_{L^{q'}(E)}$$

$$\geq N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}}||f||_{L^{2}(E)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 44 / 74

• Combining, we obtain

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}}-|S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}.$$

∋ ► < ∃ ►

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 45/74

• Combining, we obtain

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}} - |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}$$

• We now unravel $||\widehat{1_E f}||_{L^q(S^c)}$. We have

$$\|\widehat{\mathbf{1}_{E}f}\|_{L^{q}(S^{c})} = \|\widehat{f} - \widehat{\mathbf{1}_{E^{c}}f}\|_{L^{q}(S^{c})}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 45 / 74

• Combining, we obtain

۵

$$||f||_{L^{2}(E)} \leq \frac{||\widehat{1_{E}f}||_{L^{q}(S^{c})}}{N^{\frac{d}{2}\left(\frac{2-q}{q}\right)}|E|^{\frac{1}{2}-\frac{1}{q'}} - |S|^{\frac{1}{q}}|E|^{\frac{1}{p}-\frac{1}{2}}C_{p,q}N^{-\frac{d}{2}}}$$

• We now unravel $||\widehat{1_E f}||_{L^q(S^c)}$. We have

$$||\widehat{\mathbf{1}_E f}||_{L^q(S^c)} = ||\widehat{f} - \widehat{\mathbf{1}_{E^c} f}||_{L^q(S^c)}$$

$$\leq ||\widehat{f}||_{L^q(S^c)} + ||\widehat{\mathbf{1}_{E^c}f}||_{L^q(S^c)}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 45 / 74

۲

 $\leq |S^{c}|^{\frac{1}{q}-\frac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}\right).$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 46 / 74

$$\leq |S^{c}|^{rac{1}{q}-rac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}
ight).$$

• We have

۲

$$||f||_{L^2(\mathbb{Z}_N^d)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}.$$

- ∢ ∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 46/74

$$\leq |S^{c}|^{rac{1}{q}-rac{1}{2}}\left(||\widehat{f}||_{L^{2}(S^{c})}+||f||_{L^{2}(E^{c})}
ight).$$

We have

۲

$$||f||_{L^2(\mathbb{Z}^d_N)} \le ||f||_{L^2(E)} + ||f||_{L^2(E^c)}.$$

 Rearranging the terms yields the conclusion of the case 1 ≤ p ≤ q ≤ 2.

A consequence of annihilating pairs inequalities

• The following result was originally proven directly by A.I. and A. Mayeli earlier this year, but it also follows directly from the annihilating pairs inequalities we just proved.

A consequence of annihilating pairs inequalities

• The following result was originally proven directly by A.I. and A. Mayeli earlier this year, but it also follows directly from the annihilating pairs inequalities we just proved.

Theorem

Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, and $\hat{f} : \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $S \subset \mathbb{Z}_N^d$. Suppose S satisfies the (p,q) restriction estimate with norm $C_{p,q}$, $1 \le p \le q$, $p \le 2$.

i) If $q \ge 2$, then

$$|E|^{\frac{2-p}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}^2}.$$

ii) If $1 \le p \le q \le 2$, then

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot|S|\geq \frac{N^d}{C^q_{p,q}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 47/74

From Restriction to Exact Recovery

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support supp(f) = E. Let r be another signal with support of the same size such that $\hat{r}(m) = \hat{f}(m)$ for $m \notin S$, and 0 otherwise. Suppose $S \subset \mathbb{Z}_N^d$ satisfies the (p,q), p < 2, restriction estimate with uniform constant $C_{p,q}$. Then f can be reconstructed from r uniquely if

$$|E|^{\frac{1}{p}}\cdot|S|<\frac{N^{d}}{2^{\frac{1}{p}}C_{p,q}},$$

or if

$$|E|^{\frac{2-p}{p}} \cdot |S| < \frac{N^d}{2^{\frac{2-p}{p}}C_{p,q}^2} \text{ when } q \ge 2,$$

and

$$|E|^{\frac{(q'-p)q}{q'p}}\cdot|S|<\frac{N^d}{2^{\frac{(q'-p)q}{q'p}}C^q_{p,q}} \text{ when }q\leq 2.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 48 / 74

• Donoho and Stark showed that if $f : \mathbb{Z}_N^d \to \mathbb{C}$, and $E, S \subset \mathbb{Z}_N^d$ such that f is concentrated in E at level ϵ_E in the sense that

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

```
||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},
```

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

$$||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},$$

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

$$||\widehat{f}||_{L^2(S^c)} \le \epsilon_S ||\widehat{f}||_{L^2(\mathbb{Z}^d_N)}$$

with ϵ_E, ϵ_S both < 1, then

Donoho and Stark showed that if f : Z^d_N → C, and E, S ⊂ Z^d_N such that f is concentrated in E at level e_E in the sense that

$$||f||_{L^2(E^c)} \leq \epsilon_E ||f||_{L^2(\mathbb{Z}_N^d)},$$

and \widehat{f} is concentrated in S at level ϵ_S in the sense that

$$||\widehat{f}||_{L^2(S^c)} \le \epsilon_S ||\widehat{f}||_{L^2(\mathbb{Z}_N^d)}$$

with ϵ_E, ϵ_S both < 1, then

$$\epsilon_E + \epsilon_S \ge 1 - \sqrt{\frac{|E||S|}{N^d}}.$$

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and suppose that f is L^2 -concentrated on E at level $\epsilon_E > 0$ and \hat{f} is L^2 -concentrated on S at level ϵ_S . Suppose that $S \subset \mathbb{Z}_N^d$ satisfying the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$\epsilon_{\mathcal{E}} + \epsilon_{\mathcal{S}} \geq rac{1}{1 + rac{1}{1 - \sqrt{rac{C_{\mathcal{P},q}^2 |\mathcal{E}|^{rac{2-p}{p}}{|\mathcal{S}|}}}}}{N^d}}$$

۲

Concentration inequality (continued)

• The following is a direct consequence of our annihilation pairs inequalities.

Corollary

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ and suppose that f is L^2 -concentrated on E at level $\epsilon_E > 0$ and \hat{f} is L^2 -concentrated on S at level ϵ_S . Suppose that $S \subset \mathbb{Z}_N^d$ satisfying the (p, q) restriction estimate with norm $C_{p,q}$. Then

$$\epsilon_E + \epsilon_S \geq rac{1}{1 + rac{1}{1 - \sqrt{rac{C_{p,q}^2 |E|^{rac{2-p}{p}}{|S|}}{N^d}}}}$$

۲

• Note that in the case p = 1, when the restriction estimate always holds with constant $C_{1,q} = 1$, we recover a condition that is slightly stronger than the Donoho-Stark condition above.

Proof of the concentration inequality

• The concentration inequality and the assumptions on the concentration of f on E and concentration of \hat{f} on S imply that

$$\begin{split} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{split}$$

Proof of the concentration inequality

 The concentration inequality and the assumptions on the concentration of f on E and concentration of f on S imply that

$$\begin{aligned} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{aligned}$$

• It follows that if f is not identically 0, then

 $C_{ann}(\epsilon_E + \epsilon_S) \geq 1,$

which implies that

Proof of the concentration inequality

 The concentration inequality and the assumptions on the concentration of f on E and concentration of f on S imply that

$$\begin{aligned} ||f||_{L^{2}(\mathbb{Z}_{N}^{d})} &\leq C_{ann}\left(||f||_{L^{2}(E^{c})} + ||\widehat{f}||_{L^{2}(S^{c})}\right) \\ &\leq C_{ann}(\epsilon_{E} + \epsilon_{S})||f||_{L^{2}(\mathbb{Z}_{N}^{d})}. \end{aligned}$$

• It follows that if f is not identically 0, then

$$C_{ann}(\epsilon_E + \epsilon_S) \ge 1,$$

which implies that

$$\epsilon_{E} + \epsilon_{S} \ge \frac{1}{C_{ann}},$$

and the proof is complete.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 51 / 74

Another version of the uncertainty principle

• The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L^1_{loc}(\mathbb{R}^d)$ and \widehat{f} is supported in S is a k-dimensional submanifold of \mathbb{R}^d . Suppose further that $f \in L^p(\mathbb{R}^d)$ for some $p \leq \frac{2d}{k}$. Then $f \equiv 0$.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L^1_{loc}(\mathbb{R}^d)$ and \widehat{f} is supported in S is a k-dimensional submanifold of \mathbb{R}^d . Suppose further that $f \in L^p(\mathbb{R}^d)$ for some $p \leq \frac{2d}{k}$. Then $f \equiv 0$.
- A natural question is whether the exponent $\frac{2d}{k}$ is **sharp**, and what does it have to with **restriction theory**? If k = d 1 and S^{d-1} is the unit sphere, $\frac{2d}{d-1}$ is the sharp conjectured exponent for the dual of the restriction conjecture.

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^{\infty}$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 53 / 74

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^\infty$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Let

$$u_{\epsilon} = u * \chi_{\epsilon}, \ u = \widehat{f}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 53 / 74

Proof of the Agranovsky-Narayanan theorem

• Let $\chi \in C_0^{\infty}$, supported on the unit ball,

$$\int \chi(x) dx = 1,$$
$$\chi_{\epsilon}(x) = \epsilon^{-d} \chi(x/\epsilon).$$

Let

$$u_{\epsilon} = u * \chi_{\epsilon}, \ u = \widehat{f}.$$

• By Plancherel,

$$||u_{\epsilon}||_{2} = \left(\int |f(x)|^{2} |\widehat{\chi}(\epsilon x)|^{2} dx\right)^{\frac{1}{2}} \lesssim ||f||_{p} \cdot \epsilon^{-\frac{d}{p'}}.$$

Proof of the Agranovsky-Narayanan theorem (continued)

 \bullet Let ψ be a smooth cut-off function. We have

$$|\langle u_{\epsilon},\psi
angle|^{2}\leq||u_{\epsilon}||_{2}^{2}\cdot\int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^{2}d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

۲

 $\lesssim ||f||_p^2 \cdot \epsilon^{-\frac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^{\epsilon}|$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 54/74

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

٥

$$| \lesssim ||f||_p^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^\epsilon|$$

•
$$\lesssim \epsilon^{-\frac{2d}{p'}} \cdot \epsilon^{d-k} \to 0 \text{ if } p < \frac{2d}{k}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 54 / 74

• Let ψ be a smooth cut-off function. We have

$$|\langle u_{\epsilon},\psi
angle|^{2}\leq||u_{\epsilon}||_{2}^{2}\cdot\int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^{2}d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

$$\lesssim ||f||_p^2 \cdot \epsilon^{-rac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^\epsilon|$$

•
$$\lesssim \epsilon^{-rac{2d}{p'}} \cdot \epsilon^{d-k} o 0$$
 if $p < rac{2d}{k}$

• With a bit more care, it is not difficult to recover the endpoint.

• Let ψ be a smooth cut-off function. We have

$$|< u_{\epsilon},\psi>|^2\leq ||u_{\epsilon}||_2^2\cdot \int_{\mathcal{S}^{\epsilon}}|\psi(\xi)|^2d\xi,$$

where S^{ϵ} is the ϵ -neighborhood of S.

٥

$$\lesssim ||f||_p^2 \cdot \epsilon^{-\frac{2d}{p'}} \cdot ||\psi||_\infty^2 \cdot |S^{\epsilon}|$$

•
$$\lesssim \epsilon^{-rac{2d}{p'}} \cdot \epsilon^{d-k} o 0$$
 if $p < rac{2d}{k}$

- With a bit more care, it is not difficult to recover the endpoint.
- The same argument works for any set of packing dimension k (not necessarily an integer).

Sharpness (or lack of it)

• If $S = S^{d-1}$, it is not difficult to see that the exponent $\frac{2d}{k} = \frac{2d}{d-1}$ is best possible since

$$\widehat{\sigma}_{\mathcal{S}}(\xi) = J_{\frac{d-2}{2}}(|\xi|)|\xi|^{-\frac{d-2}{2}} \in L^p(\mathbb{R}^d) \text{ iff } p > \frac{2d}{d-1},$$

where σ is the surface measure on S.

Sharpness (or lack of it)

• If $S = S^{d-1}$, it is not difficult to see that the exponent $\frac{2d}{k} = \frac{2d}{d-1}$ is best possible since

$$\widehat{\sigma}_{\mathcal{S}}(\xi) = J_{\frac{d-2}{2}}(|\xi|)|\xi|^{-\frac{d-2}{2}} \in L^p(\mathbb{R}^d) \text{ iff } p > \frac{2d}{d-1},$$

where σ is the surface measure on S.

• On the other hand, if

$$S = \left\{ (t, t^2, \dots, t^d) : t \in [0, 1] \right\}, \ d \ge 3,$$

it is known that

$$\widehat{\sigma}_{S} \in L^{p}(\mathbb{R}^{d}) \text{ iff } p > \frac{d^{2}+d+2}{2} > \frac{2d}{k} = 2d.$$

A geometric approach to spectral synthesis

• Let \hat{f} be supported in S and let us cover S by a collection of **finitely** overlapping rectangles

 $\{R_{j,\delta}\}_{j=1}^{N(\delta)}, \ |R_{j,\delta}| \to 0 \text{ as } \delta \to 0.$

A geometric approach to spectral synthesis

• Let \hat{f} be supported in S and let us cover S by a collection of **finitely overlapping** rectangles

$$\{R_{j,\delta}\}_{j=1}^{\mathcal{N}(\delta)}, \ |R_{j,\delta}| \to 0 \text{ as } \delta \to 0.$$

• Let $\mu_{j,\delta}$ denote a smooth partition of unity subordinate to $\{R_{j,\delta}\}_{j=1}^{N(\delta)}$. Since \hat{f} is supported in S, it is sufficient to consider

$$\widehat{f}(\xi) \cdot \sum_{j=1}^{N(\delta)} \mu_{j,\delta}(\xi), \text{ i.e.}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 56 / 74

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}.$$

.≣. ►

.∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 57 / 74

٠

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}$$

• By Plancherel,

$$\left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{2} \approx \left(\sum_{j=1}^{N(\delta)} |R_{j,\delta}| \right)^{\frac{1}{2}} \equiv |S^{\delta}|^{\frac{1}{2}}.$$

-∢ ∃ ▶

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 57 / 74

$$||f||_{\infty} \approx \left\| f * \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{\infty} \leq ||f||_{p} \cdot \left\| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'}.$$

• By Plancherel,

۵

$$\left\| \left| \sum_{j=1}^{\mathsf{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_{2} \approx \left(\sum_{j=1}^{\mathsf{N}(\delta)} |\mathsf{R}_{j,\delta}| \right)^{\frac{1}{2}} \equiv |\mathsf{S}^{\delta}|^{\frac{1}{2}}.$$

• Note that S^{δ} is not necessarily the δ -neighborhood of S.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 57 / 74

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{N(\delta)} |R_{j,\delta}| \cdot |R_{j,\delta}^*| = N(\delta).$$

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{\mathcal{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{\mathcal{N}(\delta)} |\mathcal{R}_{j,\delta}| \cdot |\mathcal{R}_{j,\delta}^*| = \mathcal{N}(\delta).$$

• By Riesz-Thorin,

$$\left\| \left| \sum_{j=1}^{\mathsf{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_{p'} \lesssim \left| S^{\delta} \right|^{\frac{1}{p}} \cdot \left(\mathsf{N}(\delta) \right)^{1-\frac{2}{p}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 58 / 74

• On the other hand, since $R_{j,\delta}$'s are rectangles,

$$\left\| \left| \sum_{j=1}^{\mathcal{N}(\delta)} \widehat{\mu}_{j,\delta} \right\|_1 \lesssim \sum_{j=1}^{\mathcal{N}(\delta)} |\mathcal{R}_{j,\delta}| \cdot |\mathcal{R}_{j,\delta}^*| = \mathcal{N}(\delta).$$

• By Riesz-Thorin,

$$\left\|\left|\sum_{j=1}^{N(\delta)} \widehat{\mu}_{j,\delta}\right\|\right|_{p'} \lesssim \left|S^{\delta}\right|^{\frac{1}{p}} \cdot \left(N(\delta)\right)^{1-\frac{2}{p}}.$$

• The idea is to find the largest p for which this quantity $\rightarrow 0$ as $\delta \rightarrow 0$.

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

It follows that

 $|S^{\delta}| \approx \delta$, and $N(\delta) = 1$.

• Suppose that S is a compact piece of a hyperplane. cover it with a single $1 \times 1 \times \cdots \times 1 \times \delta$ rectangle.

It follows that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) = 1$.

We conclude that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \approx \delta^{\frac{1}{p}},$$

which goes to 0 for any $p < \infty$.

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

 $|S^{\delta}| \approx \delta$, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

It follows that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{1}{p}} \cdot \delta^{-\frac{d-1}{2}\left(1-\frac{2}{p}\right)} = \delta^{\frac{d}{p}-\frac{d-1}{2}}.$$

A fun example

• Let $S = S^{d-1}$. Cover S by tangent $\delta^{\frac{1}{2}} \times \delta^{\frac{1}{2}} \times \dots \delta^{\frac{1}{2}} \times \delta$ finitely overlapping rectangles. It is not difficult to see that

$$|S^{\delta}| \approx \delta$$
, and $N(\delta) \approx \delta^{-\frac{d-1}{2}}$.

It follows that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{1}{p}} \cdot \delta^{-\frac{d-1}{2}\left(1-\frac{2}{p}\right)} = \delta^{\frac{d}{p}-\frac{d-1}{2}}$$

• It follows that the critical value for p is $\frac{2d}{d-1}$, which is consistent with Agranovsky-Narayanan's theorem.

• Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61 / 74

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^{δ} is not the δ -neighborhood of S.

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^δ is not the δ-neighborhood of S.
- It follows that

$$|S^{\delta}| \approx \delta^{\frac{d+1}{2} - \frac{1}{d}}$$
, and $N(\delta) \approx \delta^{-\frac{1}{d}}$.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61/74

- Let $S = \{(t, t^2, \dots, t^d) : t \in [0, 1]\}$. Cover S by $\delta^{\frac{1}{d}} \times \delta^{\frac{2}{d}} \times \dots \times \delta$ tangent rectangles.
- A calculation shows that this can be done so that the collection has finite overlap. In this case S^δ is not the δ-neighborhood of S.
- It follows that

$$|S^{\delta}| \approx \delta^{\frac{d+1}{2} - \frac{1}{d}}$$
, and $N(\delta) \approx \delta^{-\frac{1}{d}}$.

• We conclude that

$$|S^{\delta}|^{\frac{1}{p}} \cdot (N(\delta))^{1-\frac{2}{p}} \lesssim \delta^{\frac{d+1}{2p}} \cdot \delta^{-\frac{1}{dp}} \cdot \delta^{-\frac{1}{d}\left(1-\frac{2}{p}\right)}, \text{ hence}$$

$$p_{critical} = \frac{d^2 + d + 2}{2}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 61/74

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

• Note that the Agranovsky-Narayanan theorem yields the same conclusion for *p* < 2*d* in this case.

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \ge 2$ be a positive integer and suppose that $1 \le p < \frac{d^2+d+2}{2}$. If $f \in L^p(\mathbb{R}^d)$ and \hat{f} is supported on

$$\{(t, t^2, \ldots, t^d) : t \in (0, 1)\},\$$

then $f \equiv 0$. The exponent $\frac{d^2+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

۲

- Note that the Agranovsky-Narayanan theorem yields the same conclusion for p < 2d in this case.
- We also note that $\frac{d^2+d+2}{2}$ is the optimal extension exponent (more on that in a moment).

Connections with the restriction conjecture

• On the very first page of these notes, we discussed the restriction conjecture, which says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}} \left|\widehat{f}(\xi)\right|^r d\sigma_S(\xi)\right)^{\frac{1}{r}} \leq C_{p,r} \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 63 / 74

Connections with the restriction conjecture

• On the very first page of these notes, we discussed the restriction conjecture, which says that if S^{d-1} is the unit sphere, then

$$\left(\int_{S^{d-1}} \left|\widehat{f}(\xi)\right|^r d\sigma_S(\xi)\right)^{\frac{1}{r}} \leq C_{p,r} \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}$$

whenever

$$p<rac{2d}{d+1},\ r\leqrac{d-1}{d+1}p',$$

where p' is the conjugate exponent to p.

• It is often convenient to state the dual of this inequality, the extension conjecture.

The extension conjecture

• The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1},\ p'<rac{d-1}{d+1}q.$$

The extension conjecture

The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1}, \,\, p'<rac{d-1}{d+1}q.$$

 In general, if S is compact, equipped with Borel measure σ_S, we say that a (p, q)-extension estimate holds for S if

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(\sigma_S)}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 64 / 74

The extension conjecture

The dual of the restriction conjecture above says that

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(S^{d-1})},$$

whenever

$$q>rac{2d}{d-1}, \,\, p'<rac{d-1}{d+1}q.$$

 In general, if S is compact, equipped with Borel measure σ_S, we say that a (p, q)-extension estimate holds for S if

$$||\widehat{f\sigma}||_{L^q(\mathbb{R}^d)} \leq C_{p,q}||f||_{L^p(\sigma_S)}.$$

• We call the inf of q's for which this estimate holds the critical extension exponent of S.

• Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.

- Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.
- I do not believe this conjecture. A potential counter-example is a compact strictly convex surface S, which has non-vanishing curvature in the sense that the volume of δ-caps is ≥ cδ^{d+1}/₂ with c > 0 uniform.

- Based on examples we have so far, it seems reasonable to conjecture that if \hat{f} is supported in S, and $f \in L^p(\mathbb{R}^d)$ for p smaller than the critical extension exponent of S, then $f \equiv 0$.
- I do not believe this conjecture. A potential counter-example is a compact strictly convex surface S, which has non-vanishing curvature in the sense that the volume of δ-caps is ≥ cδ^{d+1}/₂ with c > 0 uniform.
- I believe that it is possible to construct such a surface so that the critical extension exponent is >> ^{2d}/_{d-1}.

Spectral synthesis in \mathbb{Z}_N^d

Theorem

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$, and let $S \subset \mathbb{Z}_N^d$. Then

$$||f||_{L^{\infty}(\mathbb{Z}_{N}^{d})} \leq \sqrt{\frac{|S|}{N^{\frac{2d}{p}}}} \cdot ||f|_{L^{p}(\mathbb{Z}_{N}^{d})},$$

and

$$||f||_{L^{\infty}(\mathbb{Z}_{N}^{d})} \leq N^{-\frac{d}{2}} \cdot ||f||_{L^{p}(\mathbb{Z}_{N}^{d})} \cdot ||\check{1}_{\mathcal{S}}||_{L^{p'}(\mathbb{Z}_{N}^{d})}$$

where \check{f} denotes the inverse Fourier transform of f.

۲

Spectral synthesis in \mathbb{Z}_N^d

Theorem

Let $f : \mathbb{Z}_N^d \to \mathbb{C}$, and let $S \subset \mathbb{Z}_N^d$. Then

$$||f||_{L^{\infty}(\mathbb{Z}_{N}^{d})} \leq \sqrt{\frac{|S|}{N^{\frac{2d}{p}}}} \cdot ||f|_{L^{p}(\mathbb{Z}_{N}^{d})},$$

and

$$||f||_{L^{\infty}(\mathbb{Z}_{N}^{d})} \leq N^{-\frac{d}{2}} \cdot ||f||_{L^{p}(\mathbb{Z}_{N}^{d})} \cdot ||\check{1}_{\mathcal{S}}||_{L^{p'}(\mathbb{Z}_{N}^{d})}$$

where \check{f} denotes the inverse Fourier transform of f.

- ۲
- Observe that if $||f||_{L^{\infty}(\mathbb{Z}_{N}^{d})} \ge \delta$, say, and $\sqrt{\frac{|S|}{N^{\frac{2d}{p}}}}$ is sufficiently small, then we can conclude that f is identically 0 if $||f||_{L^{p}(\mathbb{Z}_{N}^{d})}$ is uniformly bounded.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 66 / 74

Proof of spectral synthesis in \mathbb{Z}_N^d theorem

• By Fourier inversion and the assumption that \hat{f} is supported in S,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 67 / 74

Proof of spectral synthesis in \mathbb{Z}_N^d theorem

• By Fourier inversion and the assumption that \hat{f} is supported in S,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

• It follows that

$$|f(x)| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \left(\sum_{m \in \mathbb{Z}_N^d} |\widehat{f}(m)|^2\right)^{\frac{1}{2}}.$$

By Plancherel, this quantity is equal to

$$N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^2\right)^{\frac{1}{2}}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 67 / 74

٠

 $= |S|^{\frac{1}{2}} \left(N^{-d} \sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 68 / 74

٥

$$=|S|^{rac{1}{2}}\left(N^{-d}\sum_{x\in\mathbb{Z}_{N}^{d}}|f(x)|^{2}
ight)^{rac{1}{2}}.$$

• By Fourier inversion and the assumption that \hat{f} is supported in S,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 68 / 74

$$= |S|^{\frac{1}{2}} \left(N^{-d} \sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}.$$

• By Fourier inversion and the assumption that \hat{f} is supported in S,

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m).$$

It follows that

٥

$$|f(x)| \leq N^{-rac{d}{2}} \cdot |S|^{rac{1}{2}} \left(\sum_{m \in \mathbb{Z}_N^d} |\widehat{f}(m)|^2\right)^{rac{1}{2}}$$

• By Plancherel, this quantity is equal to

$$|N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 69/74

• By Plancherel, this quantity is equal to

۵

$$N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}$$

$$= |S|^{\frac{1}{2}} \left(N^{-d} \sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 69 / 74

• By Plancherel, this quantity is equal to

$$N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \left(\sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}$$

$$= |S|^{\frac{1}{2}} \left(N^{-d} \sum_{x \in \mathbb{Z}_N^d} |f(x)|^2 \right)^{\frac{1}{2}}.$$

• By Holder's inequality, this quantity is bounded by

$$|S|^{\frac{1}{2}} \left(N^{-d} \sum_{x \in \mathbb{Z}_N^d} |f(x)|^p \right)^{\frac{1}{p}}$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 69/74

۲

 $=\sqrt{\frac{|S|}{N^{\frac{2d}{p}}}}\cdot ||f|_{L^{p}(\mathbb{Z}_{N}^{d})}.$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 74

۲

$$= \sqrt{\frac{|S|}{N^{\frac{2d}{p}}}} \cdot ||f|_{L^p(\mathbb{Z}_N^d)}.$$

• This completes the proof of the first part of the theorem. To prove the second part, observe that

$$\widehat{f}(m) = \widehat{f}(m)\mathbf{1}_{S}(m).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 74

$$= \sqrt{\frac{|S|}{N^{\frac{2d}{p}}}} \cdot ||f|_{L^p(\mathbb{Z}_N^d)}.$$

• This completes the proof of the first part of the theorem. To prove the second part, observe that

$$\widehat{f}(m) = \widehat{f}(m)\mathbf{1}_{S}(m).$$

It follows that

۲

$$f(x) = N^{-\frac{d}{2}} \cdot f * \check{1}_{\mathcal{S}}(x).$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 70 / 74

$$= \sqrt{\frac{|S|}{N^{\frac{2d}{p}}}} \cdot ||f|_{L^p(\mathbb{Z}_N^d)}.$$

• This completes the proof of the first part of the theorem. To prove the second part, observe that

$$\widehat{f}(m) = \widehat{f}(m)\mathbf{1}_{\mathcal{S}}(m).$$

It follows that

۲

$$f(x) = N^{-\frac{d}{2}} \cdot f * \check{1}_{S}(x).$$

• We conclude (by Holder) that

$$|f(\mathbf{x})| \leq N^{-\frac{d}{2}} \cdot ||f||_{L^{p}(\mathbb{Z}_{N}^{d})} \cdot ||\check{\mathbf{1}}_{\mathcal{S}}||_{L^{p'}(\mathbb{Z}_{N}^{d})}.$$

Theorem

Suppose that $f : \mathbb{Z}_N^d \to \mathbb{R}$, where the set $\{f(x) : x \in \mathbb{Z}_N^d\}$ is δ -separated in the sense that $|f(x) - f(y)| \ge \delta$ whenever $f(x) \ne f(y)$ and f(x) is not a constant function. Suppose that the Fourier transform of f is transmitted with the frequencies $\{\widehat{f}(m)\}_{m \in S}$ unobserved. Suppose that

$$|S| = C_{size} N^k$$
.

Then f can be recovered exactly and uniquely if

$$||f||_{L^{\frac{2d}{k}}(\mathbb{Z}_N^d)} < \frac{\delta}{2\sqrt{C_{size}}}.$$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 71/74

Proof of the signal recovery theorem

• Suppose that we cannot recover f uniquely. Then there exists $g : \mathbb{Z}_N^d$ such that

 $||f||_p = ||g||_p,$

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 72/74

Proof of the signal recovery theorem

۵

• Suppose that we cannot recover *f* uniquely. Then there exists *g* : \mathbb{Z}_N^d such that

$$||f||_{p} = ||g||_{p},$$

 $\{g(x) : x \in \mathbb{Z}_N^d\}$ is δ -separated, $\widehat{f}(m) = \widehat{g}(m)$ outside of *S*, and *f* is not identically equal to *g*.

Proof of the signal recovery theorem

• Suppose that we cannot recover f uniquely. Then there exists $g : \mathbb{Z}_N^d$ such that

$$||f||_{p} = ||g||_{p},$$

 $\{g(x): x \in \mathbb{Z}_N^d\}$ is δ -separated,

 $\widehat{f}(m) = \widehat{g}(m)$ outside of S, and f is not identically equal to g.

• Let h = f - g. Then

$$||h||_{p} \leq ||f||_{p} + ||g||_{p} \leq 2||f||_{p}$$

by Minkowski's theorem, and the support of \hat{h} is contained in S since \hat{f} and \hat{g} agree away from S.

Proof of the signal recovery theorem (finale)

• The separation condition on f and g implies that

 $||h||_{\infty} \geq \delta.$

- ∢ ∃ →

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 73 / 74

Proof of the signal recovery theorem (finale)

• The separation condition on f and g implies that

 $||h||_{\infty} \geq \delta.$

• Applying the spectral synthesis in \mathbb{Z}_N^d theorem with $p = \frac{2d}{k}$ and the observations above, we see that

$$\delta \leq ||\mathbf{h}||_{\infty} \leq 2||f||_{L^{\frac{2d}{k}}(\mathbb{Z}^d_N)} \cdot \sqrt{C_{\text{size}}}.$$

Proof of the signal recovery theorem (finale)

• The separation condition on f and g implies that

 $||h||_{\infty} \geq \delta.$

• Applying the spectral synthesis in \mathbb{Z}_N^d theorem with $p = \frac{2d}{k}$ and the observations above, we see that

$$\delta \leq ||\mathbf{h}||_{\infty} \leq 2||f||_{L^{\frac{2d}{k}}(\mathbb{Z}^d_N)} \cdot \sqrt{C_{\text{size}}}.$$

• It follows that if we assume (??), we obtain a contradiction and conclude that *h* must be identically 0. This concludes the proof of uniqueness.

Alex losevich (University of Rochester) On discrete, continuous and arithmetic aspect 74 / 74