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Restriction Conjecture

Conjecture

(Restriction conjecture) The restriction conjecture says that if Sd−1 is the
unit sphere, then(∫

Sd−1

|f̂ (ξ)|
r
dσS(ξ)

) 1
r

≤ Cp,r

(∫
Rd

|f (x)|pdx
) 1

p

whenever

p <
2d

d + 1
, r ≤ d − 1

d + 1
p′,

where p′ is the conjugate exponent to p.

This conjecture is solved in two dimensions and in spite of a lot of
brilliant work by Bourgain, Guth, Ou, Stein, Tao, Tomas, Wang and
many others, the problem is still open in higher dimensions.
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A signal recovery perspective on restriction

Suppose that A is a compact set in Rd , d ≥ 2, |A| > 0, and 1̂A(ξ) is
known except for ξ ∈ Sδ, the annulus of radius 1 and thickness δ
(small). Can we recover 1A(x) exactly?

We have

1A(x) =

∫
e2πix ·ξ1̂A(ξ)dξ

=

∫
ξ /∈Sδ

+

∫
ξ∈Sδ

= I (x) + II (x).

By assumption, we have no information about II (x), so we must
estimate it and hope for the best.
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Applying the conjectured restriction inequality

By Holder, if the restriction theorem holds with exponents (p, r), then

|II (x)| ≤ |Sδ| ·
(

1

|Sδ|

∫
Sδ

|1̂A(ξ)|
r
dξ

) 1
r

≤ Cp,r · |Sδ| · |A|
1
p .

If the right hand side is < 1
2 , i.e if |A| ≲ δ−p with suitable constants,

then we can take the modulus of I (x) and round it up to 1, or down
to 0, whichever is closer, and thus recover 1A(x) is exactly.

For any r , the restriction theorem always holds for p = 1, but
according to the restriction conjecture, it holds for any

p <
2d

d + 1
,

which gives us a much less stringent recovery condition.
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Finite Signals and Discrete Fourier transform

Let f be a signal of finite length, i.e f : Zd
N → C.

Suppose that the Fourier transform of f is transmitted, where

f̂ (m) = N− d
2

∑
x∈Zd

N

χ(−x ·m)f (x); χ(t) = e
2πit
N .

Fourier Inversion says that we can recover the signal by using the
Fourier inversion:

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m).
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Exact recovery problem

The basic question is, can we recover f exactly from its discrete
Fourier transforms if {

f̂ (m) : m ∈ S
}

are unobserved (or missing due to noise, other interference, or
security), for some S ⊂ Zd

N?

The answer turns out to be YES if f is supported in E ⊂ Zd
N , and

|E | · |S | < Nd

2
,

with the main tool being the Fourier Uncertainty Principle.
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Fourier Inversion and Plancherel

Given f : Zd
N → C, we shall use the following two formulas repeatedly:

(Fourier Inversion)

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m),

and

(Plancherel) ∑
m∈Zd

N

|f̂ (m)|
2
=
∑
x∈Zd

N

|f (x)|2.
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Proof of Fourier Inversion

We have
N− d

2

∑
m∈Zd

N

χ(x ·m)f̂ (m)

= N− d
2

∑
m∈Zd

N

χ(x ·m)N− d
2

∑
y∈Zd

N

χ(−y ·m)f (y)

=
∑
y∈Zd

N

f (y)N−d
∑
m∈Zd

N

χ((x − y) ·m) = f (x)

by orthogonality.
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Proof of Plancherel

We have ∑
m∈Zd

N

|f̂ (m)|
2

=
∑
m∈Zd

N

N−d
∑

x ,y∈Zd
N

χ((x − y) ·m)f (x)f (y)

=
∑

x ,y∈Zd
N

f (x)f (y)N−d
∑
m∈Zd

N

χ((x − y) ·m)

=
∑
x∈Zd

N

|f (x)|2.
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From Fourier decay to additive energy

Suppose that S satisfies

|1̂S(m)| ≤ CFourierN
− d

2 · |S |
1
2 for m ̸= 0.

We have
∑

m |Ŝ(m)|
4
=

= N−2d
∑

x ,y ,x ′,y

χ(z · (x + y − x ′ − y ′))1S(x)1S(y)1S(x
′)1S(y

′)

= N−d |{(x , y , x ′, y ′) ∈ S4 : x + y = x ′ + y ′}| = N−dΛ(S), i.e.

Λ(S) = |{(x , y , x ′, y ′) ∈ S4 : x + y = x ′ + y ′}| = Nd
∑
m

|1̂S(m)|4.
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From Fourier decay to additive energy (continued)

By assumption, the right-hand side is bounded by

Nd · C 2
Fourier · N−d · |S | ·

∑
z

|1̂S(m)|2.

By Plancherel, this expression equals

C 2
Fourier · |S |

2,

from which we conclude that

Λ(S)

|S |2
≤ C 2

Fourier .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
12 / 74



From Fourier decay to additive energy (continued)

By assumption, the right-hand side is bounded by

Nd · C 2
Fourier · N−d · |S | ·

∑
z

|1̂S(m)|2.

By Plancherel, this expression equals

C 2
Fourier · |S |

2,

from which we conclude that

Λ(S)

|S |2
≤ C 2

Fourier .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
12 / 74



An elementary point of view: setup

Suppose that E ⊂ Zd
N and f (x) = 1E (x), the indicator function of E .

Suppose that the Fourier transform E is transmitted, and the
frequencies in S ⊂ Zd

N are unobserved.

By Fourier Inversion,

1E (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)1̂E (m)

= N− d
2

∑
m/∈S

χ(x ·m)1̂E (m) + N− d
2

∑
m∈S

χ(x ·m)1̂E (m)
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An elementary point of view: direct estimation

= I (x) + II (x).

By the triangle inequality,

|II (x)| ≤ N− d
2 · |S | · N− d

2 · |E | = N−d · |E | · |S |.

Since we know nothing about S , the best we can do is assume that
the quantity above is small.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
14 / 74



An elementary point of view: direct estimation

= I (x) + II (x).

By the triangle inequality,

|II (x)| ≤ N− d
2 · |S | · N− d

2 · |E | = N−d · |E | · |S |.

Since we know nothing about S , the best we can do is assume that
the quantity above is small.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
14 / 74



An elementary point of view: direct estimation

= I (x) + II (x).

By the triangle inequality,

|II (x)| ≤ N− d
2 · |S | · N− d

2 · |E | = N−d · |E | · |S |.

Since we know nothing about S , the best we can do is assume that
the quantity above is small.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
14 / 74



An elementary point of view: rounding

If

N−d |E ||S | < 1

2
,

we can take the modulus of I (x) and round it up to 1 if it is ≥ 1
2 , and

round it down to 0 otherwise.

This gives us exact recovery using a simple and direct algorithm (to
be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

|E | · |S | < Nd

2
.

But what happens if we consider general signals?
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Matolcsi-Szucks/ Donoho-Stark point of view

Let h : Zd
N → C. Then the classical Uncertainty Principle says that

|supp(h)| · |supp(ĥ)| ≥ Nd .

Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , with the
frequencies in S ⊂ Zd

N unobserved.

If f cannot be recovered uniquely, then there exists a signal
g : Zd

N → C such that g also has |supp(f )| non-zero entries,

f̂ (m) = ĝ(m) for m /∈ S ,

and f is not identically equal to g .
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Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , with the
frequencies in S ⊂ Zd

N unobserved.

If f cannot be recovered uniquely, then there exists a signal
g : Zd

N → C such that g also has |supp(f )| non-zero entries,
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Uncertainty Principle → Unique Recovery

Let h = f − g . It is clear that ĥ has at most |S | non-zero entries, and
h has at most 2|supp(f )| non-zero entries.

By the Uncertainty Principle, we must have

|supp(f )| · |S | ≥ Nd

2
.

Therefore, if we assume that

|supp(f )| · |S | < Nd

2
,

we must have h = 0, and hence the recovery is unique.
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The classical uncertainty principle is, in general, sharp

Let N be an odd prime, and let S be a k-dimensional subspace of Zd
N ,

1 ≤ k ≤ d − 1.

Then
1̂S(m) = N− d

2
+k1S⊥(m).

Since |S | · |S⊥| = Nd , the classical uncertainty principle is sharp.

We are going to see that in the presence of non-trivial restriction
estimates, we can do much better. We are also going to see that
non-trivial restriction estimates ”typically” hold.
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Proof of the classical uncertainty principle

We have
h(x) = N− d

2

∑
m∈S

χ(x ·m)ĥ(m).

By the triangle inequality,

|h(x)| ≤ N− d
2 · |S | · N− d

2 ·
∑
x∈Zd

N

|h(x)|.

Summing both sides over x ∈ E and cancelling the L1 norms of h on
both sides, we obtain

|E | · |S | ≥ Nd .
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Restriction theory enters the picture

We say that S ⊂ Zd
N satisfies the (p, q) restriction estimate

(1 ≤ p ≤ q) with uniform constant Cp,q > 0 if for any function
f : Zd

N → C,

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

≤ Cp,qN
− d

2

∑
x∈Zd

N

|f (x)|p
 1

p

.

We shall need the following ”universal” restriction theorem.

Theorem

(A.I. and A. Mayeli) Let f : Zd
N → C and let S be a subset of Zd

N . Then(
1

|S |
∑
m∈S

|f̂ (m)|
2

) 1
2

≤
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

·N− d
2 ·

∑
x∈Zd

N

|f (x)|
4
3

 3
4

.
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From restriction directly to uncertainty

Before proving the universal restricion theorem, we are going to
develop a simple mechanism for going directly from restriction to
uncertainty, where the more non-trivial the restriction estimate
becomes, the better uncertainty principle we obtain. More eleborate
versions of this approach will be developed a bit later.

Theorem ( Uncertainty Principle via Restriction Theory – A.I. &
A.Mayeli, 2023)

Suppose that f , f̂ : Zd
N → C, with f supported in E ⊂ Zd

N , and f̂
supported in S ⊂ Zd

N . Suppose S satisfies the (p, q) restriction estimate
with norm Cp,q. Then

|E |
1
p · |S | ≥ Nd

Cp,q
.
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Proof of Uncertainty via Restriction

Suppose that f is supported in a set E , and f̂ is supported in a set S .
Then by the Fourier Inversion Formula and the support condition,

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).

By Holder’s inequality,

|f (x)| ≤ N− d
2 · |S | ·

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

.

By the restriction bound assumption, this expression is bounded by

|S | · Cp,q · N−d ·

∑
x∈Zd

N

|f (x)|p
 1

p

,

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
22 / 74



Proof of Uncertainty via Restriction

Suppose that f is supported in a set E , and f̂ is supported in a set S .
Then by the Fourier Inversion Formula and the support condition,

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).

By Holder’s inequality,

|f (x)| ≤ N− d
2 · |S | ·

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

.

By the restriction bound assumption, this expression is bounded by

|S | · Cp,q · N−d ·

∑
x∈Zd

N

|f (x)|p
 1

p

,

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
22 / 74



Proof of Uncertainty via Restriction

Suppose that f is supported in a set E , and f̂ is supported in a set S .
Then by the Fourier Inversion Formula and the support condition,

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).

By Holder’s inequality,

|f (x)| ≤ N− d
2 · |S | ·

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

.

By the restriction bound assumption, this expression is bounded by

|S | · Cp,q · N−d ·

∑
x∈Zd

N

|f (x)|p
 1

p

,

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
22 / 74



Proof of Uncertainty Principle via Restriction I (continued)

and by the support assumption, this quantity is equal to

|S | · Cp,q · N− d
2 ·

(∑
x∈E

|f (x)|p
) 1

p

.

Putting everything together, we see that

|f (x)| ≤ |S | · Cp,q · N−d ·

(∑
x∈E

|f (x)|p
) 1

p

.

Raising both sides to the power of p, summing over E , and dividing
both sides of the resulting inequality by

∑
x∈E |f (x)|p, we obtain

|S |p · |E | · Cp
p,q ≥ Ndp.
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Proof of Uncertainty Principle via Restriction I (finale)

or, equivalently,

|E |
1
p · |S | ≥ Nd

Cp,q
,

as desired.

This completes the proof of the Uncertainty Principle via Restriction
Theory.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
24 / 74



Proof of Uncertainty Principle via Restriction I (finale)

or, equivalently,

|E |
1
p · |S | ≥ Nd

Cp,q
,

as desired.

This completes the proof of the Uncertainty Principle via Restriction
Theory.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
24 / 74



An additive energy uncertainty principle

It would be very convenient to work out a version of the additive
energy uncertainty principle purely in terms of the additive energy of
E = supp(f ) and S = supp(f̂ ). This is where we not turn our
attention.

Theorem

(K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S.
Pack) Let f : Zd

N → C with supp(f ) = E and supp(f̂ ) = S. Then for any
α ∈ [0, 1],

Nd ≤ Λ
α
3 (E )Λ

1−α
3 (S)|E |1−α|S |α.
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Proof of the additive energy uncertainty principle

We have
f (x) = N− d

2

∑
m∈S

χ(x ·m)f̂ (m).

It follows that

|f (x)| ≤ N− d
2 · |S |

3
4 ·

∑
m∈Zd

N

|f̂ (m)|
4

 1
4

.
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Proof of the additive energy uncertainty principle
(continued)

We have ∑
m∈S

|f̂ (m)|
4

= N−2d
∑
m∈Zd

N

∑
x ,y ,x ′,y ′∈E

χ((x + y − x ′ − y ′) ·m)f (x)f (y)f (x ′)f (y ′)

= N−d
∑

x+y=x ′+y ′;x ,y ,x ′,y ′∈E
f (x)f (y)f (x ′)f (y ′)

≤ N−d · Λ(E ) · ||f ||4L∞(E).
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Proof of the additive energy uncertainty principle
(continued)

Putting everything together, we see that

|f (x)| ≤ N− d
2 · |S |

3
4 · N− d

4 · Λ
1
4 (E ) · ||f ||L∞(E).

Taking the maximum over x ∈ E and cancelling the L∞(E ) norms, we
obtain

N
3d
4 ≤ Λ

1
4 (E ) · |S |

3
4 .

Equivalently,

Nd ≤ Λ
1
3 (E ) · |S |.

Reversing the roles of E and S , we obtain

Nd ≤ Λ
1
3 (S) · |E |, which completes the proof.
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Bourgain’s Λq theorem - general formulation

Jean Bourgain proved that if G is a locally compact abelian group,
ϕ1, . . . , ϕn are orthogonal functions with ||ϕj ||∞ ≤ 1, the for a generic

set S ⊂ {1, 2, . . . , n} of size ≈ n
2
q , q > 2,∣∣∣∣∣

∣∣∣∣∣∑
i∈S

aiϕi

∣∣∣∣∣
∣∣∣∣∣
Lq(G)

≤ C (q) ·

(∑
i∈S

|ai |2
) 1

2

,

where C (q) depends only on q.

As we shall see, this result has a beautiful built-in uncertainty
principle.
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Bourgain’s Λq theorem

It is a consequence of Bourgain’s celebrated Λp theorem in locally

compact abelian groups that if f : Zd
N → C and f̂ is supported in S ,

then for a ”generic” set of size ≈ N
2d
q , 2 < q <∞, 1

Nd

∑
x∈Zd

N

|f (x)|q
 1

q

≤ Kq(S)

 1

Nd

∑
x∈Zd

N

|f (x)|2
 1

2

,

with Kq(S) independent of N.

It is not difficult to see that this inequality implies that the support of
f must be a positive proportion of Zd

N .
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A direct consequence of Bourgain’s Λq theorem

Suppose that S is generic, as in Bourgain’s theorem.

Suppose that f is supported in E ⊂ Zd
N and f̂ is supported in S .

Bourgain’s theorem implies that

N− d
q · |E |

1
q

(
1

|E |
∑
x∈E

|f (x)|q
) 1

q

≤ Kq(S)N
− d

2 · |E |
1
2

(
1

|E |
∑
x∈E

|f (x)|2
) 1

2

.
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A direct consequence of Bourgain’s Λq theorem

It follows that

|E | ≥ Nd

(Kq(S))
1

1
2−

1
q

.

It follows that if f̂ is supported in a generic set of size ≈ Nd−ϵ, then
f is supported on a positive proportion of Zd

N .

We conclude that if we send the Fourier transform of a signal f
supported on a set of size o(Nd), and the frequencies in S ⊂ Zd

N

satisfying a Λq, q > 2, inequality are missing, we can recover f
exactly and uniquely with very high probability.
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Annihilating pairs

Fedja Nazarov (1993) proved the following beautiful inequality, which
was generalized to higher dimension (under additional assumptions)
by Philippe Jaming and others.

Let E , S ⊂ R have finite measure. Then there exists a constants
c > 0 such that

||f ||L2(R) ≤ ec|E ||S|
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
.

We may discuss the continuous case in more detail later in these
lectures.

For the moment we immerse ourselves back in the world of finite
signals.
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Annihilating pairs: Ghobber and Jaming

Let f : Zd
N → C. Ghobber and Jaming proved in 2011 that if

E ,S ⊂ Zd
N , |E | · |S | < Nd , then

||f ||L2(Zd
N)

≤

1 +
1

1−
√

|E ||S|
Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
.

Observe that this result easily implies the classical uncertainty
principle since if f is supported in E , f̂ is supported in S , and

|E | · |S | < Nd ,

then the right hand side of the inequality above is 0. Hence the left
hand side is also 0 and the uncertainty principle is established.
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Proof of the Ghobber-Jaming result

We have
||1̂E f ||L2(S) ≤ N− d

2 · |S |
1
2 · ||f ||L1(E)

≤ N− d
2 · |S |

1
2 · |E |

1
2 · ||f ||L2(E).

On the other hand,

||1̂E f ||L2(Sc ) ≥ ||1̂E f ||L2(Zd
N)

− ||1̂E f ||L2(S)

≥ ||f ||L2(E)

(
1− N− d

2 · |S |
1
2 · |E |

1
2

)
.
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Proof of the Ghobber-Jaming result (continued)

We are almost ready to drive for the finish line. By the triangle
inequality,

||f ||L2(Zd
N)

≤ ||f ||L2(E) + ||f ||L2(E c )

≤ ||1̂E f ||L2(Sc ) ·
1

1−
√

|E ||S|
Nd

+ ||f ||L2(E c )

= ||f̂ − 1̂E c f ||L2(Sc ) ·
1

1−
√

|E ||S |
Nd

+ ||f ||L2(E c )
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Proof of the Ghobber-Jaming result (continued)

≤
(
||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
· 1

1−
√

|E ||S |
Nd

+ ||f ||L2(E c )

1 +
1

1−
√

|E ||S|
Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

and the proof is complete.
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Annihilating pairs and structure of sets

Just as we were able prove a stronger uncertainty principle in the
presence of limited additive structure, we can do the same in the case
of annihilating pairs inequalities.

The following is a recent result due to A.I., P. Jaming and A. Mayeli.
Suppose that a (p, q) Fourier restriction estimate holds for S ⊂ Zd

N ,
1 ≤ p ≤ 2 ≤ q, with norm Cp,q. Then

||f ||L2(Zd
N)

≤

1 +
1

1−

√
C2
p,q |E |

2−p
p |S |

Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

provided that

|E |
2−p
p |S | < Nd

C 2
p,q

.
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The case 1 ≤ p ≤ q ≤ 2

If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for
S ,

||f ||L2(Zd
N)

≤

1 +
|E |

1
2
− 1

q′

1−

(
|S||E |

(q′−p)q
q′p Cq

p,q

Nd

) 1
q


(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

provided that

|E |
(q′−p)q

q′p · |S | < Nd

Cq
p,q
.
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Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction
assumption,

||1̂E f ||L2(S) = |S |
1
2 ||1̂E f ||L2(µS )

≤ |S |
1
2 ||1̂E f ||Lq(µS )

≤ |S |
1
2 · Cp,qN

− d
2 ||f ||Lp(E)

by assumption.

By Holder’s inequality, this quantity is bounded by

Cp,q|S |
1
2N− d

2 |E |
2−p
2p ||f ||L2(E) =

√
C 2
p,q|S ||E |

2−p
p

Nd
||f ||L2(E).
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Proof of the A.I.-Jaming-Mayeli result (continued)

On the other hand,

||1̂E f ||L2(Sc ) ≥ ||1̂E f ||L2(Zd
N)

− ||1̂E f ||L2(S)

≥

1−

√
C 2
p,q|S ||E |

2−p
p

Nd

 ||f ||L2(E).

We are now ready for the conclusion of the proof. We have

||f ||L2(Zd
N)

≤ ||f ||L2(E) + ||f ||L2(E c )

≤

1−

√
C 2
p,q|S ||E |

2−p
p

Nd


−1

||1̂E f ||L2(Sc ) + ||f ||L2(E c ).
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Proof of the A.I.-Jaming-Mayeli result (continued)

We are left to unravel the quantity ||1̂E f ||L2(Sc ). We have

||1̂E f ||L2(Sc ) = ||1Sc f̂ − 1Sc 1̂E c f ||L2(Zd
N)

≤ ||f̂ ||L2(Sc ) + ||f ||L2(E c ).

Plugging this back into above, we have

||f ||L2(Zd
N)

≤

≤

1−

√
C 2
p,q|S ||E |

2−p
p

Nd


−1 (

||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
+ ||f ||L2(E c )

and the case 1 ≤ p ≤ 2 ≤ q is established.
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Proof of the A.I.-Jaming-Mayeli result (continued)

We now handle the case 1 ≤ p ≤ q ≤ 2. By assumption, we have

||1̂E f ||Lq(S) ≤ |S |
1
qCp,qN

− d
2 ||f ||Lp(E)

≤ |S |
1
q |E |

1
p
− 1

2Cp,qN
− d

2 ||f ||L2(E).

Lemma (Hausdorff-Young inequality)

Suppose that f : Zd
N → C and 1 ≤ p ≤ 2. Then

||f̂ ||Lp′ (Zd
N)

≤ N
− d

2

(
2−p
p

)
||f ||Lp(Zd

N)
.
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Proof of the A.I.-Jaming-Mayeli result (continued)

The case p = 1 follows by the triangle inequality and the definition of
the Fourier transform. The case p = 2 is Plancherel. The result
follows by Riesz-Thorin interpolation theorem.

Using Hausdorff-Young, we have

||1̂E f ||Lq(Zd
N)

≥ N
d
2

(
2−q
q

)
||f ||Lq′ (E)

≥ N
d
2

(
2−q
q

)
|E |

1
2
− 1

q′ ||f ||L2(E).
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Proof of the A.I.-Jaming-Mayeli result (continued)

Combining, we obtain

||f ||L2(E) ≤
||1̂E f ||Lq(Sc )

N
d
2

(
2−q
q

)
|E |

1
2
− 1

q′ − |S |
1
q |E |

1
p
− 1

2Cp,qN
− d

2

.

We now unravel ||1̂E f ||Lq(Sc ). We have

||1̂E f ||Lq(Sc ) = ||f̂ − 1̂E c f ||Lq(Sc )

≤ ||f̂ ||Lq(Sc ) + ||1̂E c f ||Lq(Sc )
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Proof of the A.I.-Jaming-Mayeli result (continued)

≤ |Sc |
1
q
− 1

2

(
||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
.

We have
||f ||L2(Zd

N)
≤ ||f ||L2(E) + ||f ||L2(E c ).

Rearranging the terms yields the conclusion of the case
1 ≤ p ≤ q ≤ 2.
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A consequence of annihilating pairs inequalities

The following result was originally proven directly by A.I. and A.
Mayeli earlier this year, but it also follows directly from the
annihilating pairs inequalities we just proved.

Theorem

Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , and f̂ : Zd
N → C is

supported in S ⊂ Zd
N . Suppose S satisfies the (p, q) restriction estimate

with norm Cp,q, 1 ≤ p ≤ q, p ≤ 2.

i) If q ≥ 2, then

|E |
2−p
p · |S | ≥ Nd

C 2
p,q

.

ii) If 1 ≤ p ≤ q ≤ 2, then

|E |
(q′−p)q

q′p · |S | ≥ Nd

Cq
p,q
.
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From Restriction to Exact Recovery

Corollary

Let f : Zd
N → C with support supp(f ) = E. Let r be another signal with

support of the same size such that r̂(m) = f̂ (m) for m /∈ S, and 0
otherwise. Suppose S ⊂ Zd

N satisfies the (p, q), p < 2, restriction estimate
with uniform constant Cp,q. Then f can be reconstructed from r uniquely
if

|E |
1
p · |S | < Nd

2
1
pCp,q

,

or if

|E |
2−p
p · |S | < Nd

2
2−p
p C 2

p,q

when q ≥ 2,

and

|E |
(q′−p)q

q′p · |S | < Nd

2
(q′−p)q

q′p Cq
p,q

when q ≤ 2.
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Concentration inequality

Donoho and Stark showed that if f : Zd
N → C, and E , S ⊂ Zd

N such
that f is concentrated in E at level ϵE in the sense that

||f ||L2(E c ) ≤ ϵE ||f ||L2(Zd
N)
,

and f̂ is concentrated in S at level ϵS in the sense that

||f̂ ||L2(Sc ) ≤ ϵS ||f̂ ||L2(Zd
N)
,

with ϵE , ϵS both < 1, then

ϵE + ϵS ≥ 1−
√

|E ||S |
Nd

.
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Concentration inequality (continued)

The following is a direct consequence of our annihilation pairs
inequalities.

Corollary

Let f : Zd
N → C and suppose that f is L2-concentrated on E at level

ϵE > 0 and f̂ is L2-concentrated on S at level ϵS . Suppose that S ⊂ Zd
N

satisfying the (p, q) restriction estimate with norm Cp,q. Then

ϵE + ϵS ≥ 1

1 + 1

1−

√
C2
p,q |E |

2−p
p |S|

Nd

.

Note that in the case p = 1, when the restriction estimate always
holds with constant C1,q = 1, we recover a condition that is slightly
stronger than the Donoho-Stark condition above.
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Proof of the concentration inequality

The concentration inequality and the assumptions on the
concentration of f on E and concentration of f̂ on S imply that

||f ||L2(Zd
N)

≤ Cann

(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
≤ Cann(ϵE + ϵS)||f ||L2(Zd

N)
.

It follows that if f is not identically 0, then

Cann(ϵE + ϵS) ≥ 1,

which implies that

ϵE + ϵS ≥ 1

Cann
,

and the proof is complete.
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Another version of the uncertainty principle

The following beautiful version of the Fourier uncertainty principle
was obtained by Agranovsky and Narayanan.

Suppose that f ∈ L1loc(Rd) and f̂ is supported in S is a k-dimensional
submanifold of Rd . Suppose further that f ∈ Lp(Rd) for some
p ≤ 2d

k . Then f ≡ 0.

A natural question is whether the exponent 2d
k is sharp, and what

does it have to with restriction theory? If k = d − 1 and Sd−1 is the
unit sphere, 2d

d−1 is the sharp conjectured exponent for the dual of the
restriction conjecture.
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Proof of the Agranovsky-Narayanan theorem

Let χ ∈ C∞
0 , supported on the unit ball,∫

χ(x)dx = 1,

χϵ(x) = ϵ−dχ(x/ϵ).

Let
uϵ = u ∗ χϵ, u = f̂ .

By Plancherel,

||uϵ||2 =
(∫

|f (x)|2|χ̂(ϵx)|2dx
) 1

2

≲ ||f ||p · ϵ
− d

p′ .
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Proof of the Agranovsky-Narayanan theorem (continued)

Let ψ be a smooth cut-off function. We have

| < uϵ, ψ > |2 ≤ ||uϵ||22 ·
∫
Sϵ

|ψ(ξ)|2dξ,

where Sϵ is the ϵ-neighborhood of S .

≲ ||f ||2p · ϵ
− 2d

p′ · ||ψ||2∞ · |Sϵ|

≲ ϵ
− 2d

p′ · ϵd−k → 0 if p <
2d

k
.

With a bit more care, it is not difficult to recover the endpoint.

The same argument works for any set of packing dimension k (not
necessarily an integer).
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The same argument works for any set of packing dimension k (not
necessarily an integer).
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Sharpness (or lack of it)

If S = Sd−1, it is not difficult to see that the exponent 2d
k = 2d

d−1 is
best possible since

σ̂S(ξ) = J d−2
2
(|ξ|)|ξ|−

d−2
2 ∈ Lp(Rd) iff p >

2d

d − 1
,

where σ is the surface measure on S .

On the other hand, if

S =
{
(t, t2, . . . , td) : t ∈ [0, 1]

}
, d ≥ 3,

it is known that

σ̂S ∈ Lp(Rd) iff p >
d2 + d + 2

2
>

2d

k
= 2d .
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A geometric approach to spectral synthesis

Let f̂ be supported in S and let us cover S by a collection of finitely
overlapping rectangles

{Rj ,δ}
N(δ)
j=1 , |Rj ,δ| → 0 as δ → 0.

Let µj ,δ denote a smooth partition of unity subordinate to {Rj ,δ}
N(δ)
j=1 .

Since f̂ is supported in S , it is sufficient to consider

f̂ (ξ) ·
N(δ)∑
j=1

µj ,δ(ξ), i.e.
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A geometric approach to spectral synthesis (continued)

||f ||∞ ≈

∣∣∣∣∣∣
∣∣∣∣∣∣f ∗

N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ ||f ||p ·

∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

.

By Plancherel, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≈

N(δ)∑
j=1

|Rj ,δ|

 1
2

≡ |Sδ|
1
2 .

Note that Sδ is not necessarily the δ-neighborhood of S .
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A geometric approach to spectral synthesis (continued)

On the other hand, since Rj ,δ’s are rectangles,∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≲
N(δ)∑
j=1

|Rj ,δ| · |R∗
j ,δ| = N(δ).

By Riesz-Thorin, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

≲ |Sδ|
1
p · (N(δ))1−

2
p .

The idea is to find the largest p for which this quantity → 0 as δ → 0.
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A flat example

Suppose that S is a compact piece of a hyperplane. cover it with a
single 1× 1× · · · × 1× δ rectangle.

It follows that
|Sδ| ≈ δ, and N(δ) = 1.

We conclude that

|Sδ|
1
p · (N(δ))1−

2
p ≈ δ

1
p ,

which goes to 0 for any p <∞.
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A fun example

Let S = Sd−1. Cover S by tangent δ
1
2 × δ

1
2 × . . . δ

1
2 × δ finitely

overlapping rectangles. It is not difficult to see that

|Sδ| ≈ δ, and N(δ) ≈ δ−
d−1
2 .

It follows that

|Sδ|
1
p · (N(δ))1−

2
p ≲ δ

1
p · δ−

d−1
2

(
1− 2

p

)
= δ

d
p
− d−1

2 .

It follows that the critical value for p is 2d
d−1 , which is consistent with

Agranovsky-Narayanan’s theorem.
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An even more entertaining example

Let S = {(t, t2, . . . , td) : t ∈ [0, 1]}. Cover S by δ
1
d × δ

2
d × · · · × δ

tangent rectangles.

A calculation shows that this can be done so that the collection has
finite overlap. In this case Sδ is not the δ-neighborhood of S .

It follows that

|Sδ| ≈ δ
d+1
2

− 1
d , and N(δ) ≈ δ−

1
d .

We conclude that

|Sδ|
1
p · (N(δ))1−

2
p ≲ δ

d+1
2p · δ−

1
dp · δ−

1
d

(
1− 2

p

)
, hence

pcritical =
d2 + d + 2

2
.
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Space curves

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let d ≥ 2

be a positive integer and suppose that 1 ≤ p < d2+d+2
2 . If f ∈ Lp(Rd) and

f̂ is supported on
{(t, t2, . . . , td) : t ∈ (0, 1)},

then f ≡ 0. The exponent d2+d+2
2 is best possible, up to the endpoint.

Moreover, the conclusion is still valid for small perturbations of this curve.

Note that the Agranovsky-Narayanan theorem yields the same
conclusion for p < 2d in this case.

We also note that d2+d+2
2 is the optimal extension exponent (more on

that in a moment).
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Connections with the restriction conjecture

On the very first page of these notes, we discussed the restriction
conjecture, which says that if Sd−1 is the unit sphere, then(∫

Sd−1

|f̂ (ξ)|
r
dσS(ξ)

) 1
r

≤ Cp,r

(∫
Rd

|f (x)|pdx
) 1

p

whenever

p <
2d

d + 1
, r ≤ d − 1

d + 1
p′,

where p′ is the conjugate exponent to p.

It is often convenient to state the dual of this inequality, the extension
conjecture.
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The extension conjecture

The dual of the restriction conjecture above says that

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(Sd−1),

whenever

q >
2d

d − 1
, p′ <

d − 1

d + 1
q.

In general, if S is compact, equipped with Borel measure σS , we say
that a (p, q)-extension estimate holds for S if

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(σS )
.

We call the inf of q’s for which this estimate holds the critical
extension exponent of S .
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Extension versus spectral synthesis

Based on examples we have so far, it seems reasonable to conjecture
that if f̂ is supported in S , and f ∈ Lp(Rd) for p smaller than the
critical extension exponent of S , then f ≡ 0.

I do not believe this conjecture. A potential counter-example is a
compact strictly convex surface S , which has non-vanishing curvature

in the sense that the volume of δ-caps is ≥ cδ
d+1
2 with c > 0 uniform.

I believe that it is possible to construct such a surface so that the
critical extension exponent is >> 2d

d−1 .
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Spectral synthesis in Zd
N

Theorem

Let f : Zd
N → C, and let S ⊂ Zd

N . Then

||f ||L∞(Zd
N)

≤

√
|S |

N
2d
p

· ||f |Lp(Zd
N)
,

and
||f ||L∞(Zd

N)
≤ N− d

2 · ||f ||Lp(Zd
N)

· ||1̌S ||Lp′ (Zd
N)
,

where f̌ denotes the inverse Fourier transform of f .

Observe that if ||f ||L∞(Zd
N)

≥ δ, say, and

√
|S|

N
2d
p

is sufficiently small,

then we can conclude that f is identically 0 if ||f ||Lp(Zd
N)

is uniformly

bounded.
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N . Then

||f ||L∞(Zd
N)

≤

√
|S |

N
2d
p

· ||f |Lp(Zd
N)
,

and
||f ||L∞(Zd

N)
≤ N− d

2 · ||f ||Lp(Zd
N)

· ||1̌S ||Lp′ (Zd
N)
,

where f̌ denotes the inverse Fourier transform of f .

Observe that if ||f ||L∞(Zd
N)

≥ δ, say, and

√
|S|

N
2d
p

is sufficiently small,

then we can conclude that f is identically 0 if ||f ||Lp(Zd
N)

is uniformly

bounded.
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Proof of spectral synthesis in Zd
N theorem

By Fourier inversion and the assumption that f̂ is supported in S ,

f (x) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).

It follows that

|f (x)| ≤ N− d
2 · |S |

1
2

∑
m∈Zd

N

|f̂ (m)|
2

 1
2

.

By Plancherel, this quantity is equal to

N− d
2 · |S |

1
2

∑
x∈Zd

N

|f (x)|2
 1

2
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Proof of spectral synthesis in Zd
N theorem (continued)

= |S |
1
2

N−d
∑
x∈Zd

N

|f (x)|2
 1

2

.

By Fourier inversion and the assumption that f̂ is supported in S ,

f (x) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).
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|f (x)| ≤ N− d
2 · |S |

1
2
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m∈Zd

N
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2

 1
2
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Proof of spectral synthesis in Zd
N theorem (continued)

By Plancherel, this quantity is equal to

N− d
2 · |S |

1
2

∑
x∈Zd

N

|f (x)|2
 1

2

= |S |
1
2

N−d
∑
x∈Zd

N

|f (x)|2
 1

2

.

By Holder’s inequality, this quantity is bounded by

|S |
1
2

N−d
∑
x∈Zd

N

|f (x)|p
 1

p
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Proof of spectral synthesis in Zd
N theorem (continued)

=

√
|S |

N
2d
p

· ||f |Lp(Zd
N)
.

This completes the proof of the first part of the theorem. To prove
the second part, observe that

f̂ (m) = f̂ (m)1S(m).

It follows that
f (x) = N− d

2 · f ∗ 1̌S(x).

We conclude (by Holder) that

|f (x)| ≤ N− d
2 · ||f ||Lp(Zd

N)
· ||1̌S ||Lp′ (Zd

N)
.
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Application to signal recovery

Theorem

Suppose that f : Zd
N → R, where the set {f (x) : x ∈ Zd

N} is δ-separated in
the sense that |f (x)− f (y)| ≥ δ whenever f (x) ̸= f (y) and f (x) is not a
constant function. Suppose that the Fourier transform of f is transmitted
with the frequencies {f̂ (m)}m∈S unobserved. Suppose that

|S | = CsizeN
k .

Then f can be recovered exactly and uniquely if

||f ||
L
2d
k (Zd

N)
<

δ

2
√
Csize

.
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Proof of the signal recovery theorem

Suppose that we cannot recover f uniquely. Then there exists g : Zd
N

such that
||f ||p = ||g ||p,

{g(x) : x ∈ Zd
N} is δ-separated,

f̂ (m) = ĝ(m) outside of S , and f is not identically equal to g .

Let h = f − g . Then

||h||p ≤ ||f ||p + ||g ||p ≤ 2||f ||p

by Minkowski’s theorem, and the support of ĥ is contained in S since
f̂ and ĝ agree away from S .
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f̂ and ĝ agree away from S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
72 / 74



Proof of the signal recovery theorem

Suppose that we cannot recover f uniquely. Then there exists g : Zd
N

such that
||f ||p = ||g ||p,

{g(x) : x ∈ Zd
N} is δ-separated,
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Proof of the signal recovery theorem (finale)

The separation condition on f and g implies that

||h||∞ ≥ δ.

Applying the spectral synthesis in Zd
N theorem with p = 2d

k and the
observations above, we see that

δ ≤ ||h||∞ ≤ 2||f ||
L
2d
k (Zd

N)
·
√
Csize .

It follows that if we assume (??), we obtain a contradiction and
conclude that h must be identically 0. This concludes the proof of
uniqueness.
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