HW 2 (Wednesday)
1. Deduce the functional equation for Riemann's
S-function:

$$\pi^{-5/2} \Gamma'(\frac{s}{2}) S(s) = \pi^{-(k-s)/2} \Gamma(\frac{k-s}{2}) S(k-s), seC$$

Hint: Consider $g(t) := \sum_{n\geq s} e^{-\pi n^2 t}$
• Show that $g(t) = -\frac{s}{2} + \frac{s}{2\sqrt{t}} + \frac{1}{\sqrt{t}} g(\frac{t}{t})$
(the Poisson summation)
• $Re(s) > \frac{1}{2}$
 $\int_{0}^{\infty} g(t) t^{s-1} dt = \frac{\Gamma(s)}{\pi^s} S(2s)$
 $\Rightarrow \frac{\Gamma(s|2)}{\pi^{s/2}} S(s) = \frac{1}{s-1} - \frac{1}{s} + \int_{1}^{\infty} g(t) [t^{s/2} + t^{(k-s)/2}] \frac{dt}{t}$
• the integral on the RHS is an entire f-n
• RHS is indoviant w.r.t. $s \mapsto 1-s$.
Remark: This was one of Riemann's original proofs. Note
that it uses only that $S(s)$ is defined and analytic
only for $Re(s) > 4$ whore $S(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

2.
$$PW_{l_{2}}:=\{f\in [{}^{2}(\mathbb{R}): spt(f)\subset [-\frac{1}{2},\frac{1}{2}] - the Paley-Wiener space.
(a) Show that $PW_{l_{2}}$ is a closed subspace of $L^{2}(\mathbb{R})$.
(b) $f\in PW_{l_{2}} \Rightarrow f$ is entire, $|f(z_{2})| \leq ||f||_{2} e^{\pi i Im z l}$.
(c) f is entire, $|f(z_{2})| \leq C (1+|z_{1})^{-1}e^{\pi i Im z l} \Rightarrow f\in PW_{l_{2}}$.
(d) Show that the system of functions $\left(\frac{\sin \pi(x-k)}{\pi(x-k)}\right)_{k\in\mathbb{Z}}$.
is an orthonormal basis in $PW_{l_{2}}$, and that the
sampling formula (*) prodides a Hilbert spaces
isomorphism $l^{2}(TL) \rightarrow PW_{l_{2}}$.
(e) Put $S(t,z) = \frac{\sin \pi(t-z)}{\pi(t-z)}$, $t\in\mathbb{R}$, $z\in\mathbb{C}$.
Then, for any $f\in PW_{l_{2}}$, $f(z) = \langle f, S(\cdot, z) \rangle_{L^{2}(\mathbb{R})}$,
i.e. $S(t,z)$ is the reproducing ledenel in $PW_{l_{2}}$.
Remark: (c) is a weak dension of the Paley-Wiener
theorem; f is entire, $|f(z_{2})| \leq Ce^{\pi |z|}$, $f(z)^{2}(\mathbb{R}) \Rightarrow f\in PW_{l_{2}}$.$$

The general version can be deduced (in several esteps) from (c) using the Phragmén-Lindelöf principle.

3. Prove a "polynomial version" of Hardy's thm: $|f(x)| \leq (1 + |x|^n) e^{-\pi x^2}$ $|f(\xi)| \leq (1 + |\xi|^2)^n e^{-\pi \xi^2}$ $\Rightarrow f = Pe^{-\pi x^2}, \hat{f} = Qe^{-\pi x^2}, \operatorname{deg} P, \operatorname{deg} Q \leq n.$ 4. Prove a "one-sided version" of Hardy's thm: Suppose that Ifixs12e^ax2, x20, and If 13) = = = = for 3=0. Then f=0 produced that ab is sufficiently loorge. Hint: · Wlog, fES (otherwise, convolve f with a test function $\chi \in C_{0}^{\infty}(\mathbb{R})$, then do the same

on the Fourier side)

derary.

• Set $f(\infty) = f(-\infty)$, consider the function

(f.f)*(f.f), and estimate its (two-sided)

basicato yenizy I