
Foundations of Cryptography. 
Lecture 2: Cryptomania

Anna Lysyanskaya



Last Time: One-Way Functions and Minicrypt

• Definitions of security for
• Symmetric encryption
• One-way functions
• Pseudorandom generators
• Pseudorandom functions
• Block ciphers

• Concepts: indistinguishability
• Theorems: Existence of OWF is necessary and sufficient for symmetric 

encryption, PRGs, PRFs, and block ciphers.

• Minicrypt: everything you can construct from a one-way function
• One of five of Impagliazzo’s possible worlds



Today: Cryptomania
• Cryptomania = world in which more sophisticated cryptography is possible

• OWFs exist, and more

• Example of a cryptomania resident: public-key encryption
• Impagliazzo and Rudich showed that you cannot build public-key encryption from a OWF.

• What do we need to achieve public-key encryption?
• Definition of security
• Construction – it will use OWFs enhanced with a trapdoor, and zero-knowledge proofs
• Proof of security of the construction



Today: Cryptomania
• Zero-knowledge proofs

• Definition (high level)
• Construction for an NP-complete language
• Another flavor: non-interactive zero-knowledge proof (NIZK)

• Public-key encryption: definition

• Trapdoor permutation (aka OWP with a trapdoor)
• Definition
• Examples

• Construct public-key encryption from NIZK and TDPs
• Very theoretical construction, don’t use it in practice! But helps understand proofs of security.

• Look at practical constructions and try to make sense of them using our 
theoretical tools



Zero-Knowledge Proof: Idea
• Two parties: a Prover and a Verifier

• Prover’s input is a theorem X and its proof W

• Verifier just has the theorem X
• How does the Prover convince the Verifier that the theorem holds?

• Obvious idea: reveal the proof W
• But what’s the fun in that?  You don’t want to give away your proof, you want your friend to find it herself!

• How does the Prover convince the Verifier that the theorem holds without revealing anything 
about the proof?
• Use a zero-knowledge proof!



Zero-knowledge proofs: 
a crash course



Can you 3-color a graph?

1. Each vertex colored 
red, green or blue

2. No monochromatic 
edges



1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges

Can you 3-color a graph?



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Can you 3-color a graph?

1. Each vertex colored red, 
green or blue

2. No monochromatic 
edges



Is every graph 3-colorable?



Is every graph 3-colorable?



Is every graph 3-colorable?



Is every graph 3-colorable?

No...



Zero-knowledge proof of 3-colorability



Let me convince 
you that it’s 
3-colorable!

Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Please step out.

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Please come
back in, and check

one edge.

Prover



Zero-knowledge proof of 3-colorability

Prover



Do you want
to check another

edge?

Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Please step out.

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



Zero-knowledge proof of 3-colorability

Prover



If we repeat
100 times and you

never catch me
lying, you’ll be

convinced!

[GMW86]

Zero-knowledge proof of 3-colorability

Prover



Do you need paper cups?
NO.  In the actual protocol, the prover “commits” to the colors. 
 
For example, let f be a OWP, and let B be its hardcore bit.

To color the vertex v with the color(v) ∈ {00, 01, 10}, pick random x1 and x2 from {0,1}l
compute y1 = f(x1), y2=f(x2), mask = B(x1)B(x2), masked_color=mask ⊕ color(v)

Instead of coloring v and covering it with a paper cup, announce “my commitment to 
the color of v corresponds to the unmasking of masked_color for y1, y2” 

To ``open,” reveal x1, x2.  The verifier (1) checks that y1 = f(x1), y2=f(x2) and     
     (2) sets color(v) = masked_color ⊕ B(x1)B(x2)

This commitment hides the color (because B is a hardcore bit), but the prover cannot 
change his mind about it.



Zero-Knowledge Proof: More Formally
• First, recall what a “language” L in NP looks like: 

 L = {x | ∃ witness w such that WitnessVerification(x,w) = Accept}
• For example:

     3-Colorability = {graph G | ∃ a way to color vertices of G into three colors so that for each
                                                     (u,v) in E(G), color(u) different from color(v) }

• Let (A,B) be a pair of interactive algorithms.  Notation: let Output(A(x)<->B(x)) denote the output of 
A(x) after interacting with B(y). 

• A pair of algorithms (Prover, Verifier) constitute a zero-knowledge proof system for a language L if:
• Running time: Verifier is a probabilistic polynomial-time algorithm.  (Often we also need Prover to be ppt)
• Completeness:  if x ∈  L and w is the ``witness” to that, then Output(Verifier(1l,x) <->Prover(1l,x,w)) = Accept
• Soundness e: if x ∉  L, then for any adversarial Prover*,  Pr[Output(Verifier(1l,x) <->Prover(1l,x,w)) = Accept] ≤ e
• Zero knowledge: ∀ adversarial verifier V*, ∃ a ppt “simulator” algorithm SimV* such that ∀ x ∈ L, the output of 

SimV*(1l,x) is indistinguishable from Output(V*(1l,x) <->Prover(1l,x,w)). 

The meaning of this simulator: whatever the verifier V* learns from Prover(1l,x,w), it can learn by just running SimV*(1l,x) 
without any access to the Prover at all.

Why does this even make sense?  The simulator can see “inside” the verifier, reset it to a previous state, etc.



Zero-Knowledge Proof: More Formally
• A pair of algorithms (Prover, Verifier) constitute a zero-knowledge proof system for a language L if:

• Running time: Verifier is a probabilistic polynomial-time algorithm.  (Often we also need Prover to be ppt)
• Completeness:  if x ∈  L and w is the ``witness” to that, then Output(Verifier(1l,x) <->Prover(1l,x,w)) = Accept
• Soundness e: if x ∉  L, then for any adversarial Prover*,  Pr[Output(Verifier(1l,x) <->Prover(1l,x,w)) = Accept] ≤ e
• Zero knowledge: ∀ adversarial verifier V*, ∃ a ppt “simulator” algorithm SimV* such that ∀ x ∈ L, the output of 

SimV*(1l,x) is indistinguishable from Output(V*(1l,x) <->Prover(1l,x,w)). 

The meaning of this simulator: whatever the verifier V* learns from Prover(1l,x,w), it can learn by just running SimV*(1l,x) 
without any access to the Prover at all.

Why does this even make sense?  The simulator can see “inside” the verifier, reset it to a previous state, etc.

• Theorem: the protocol we just saw for 3-colorability is a ZK proof system
• Running time: yes
• Completeness: yes
• Soundness: already argued
• ZK property: need to come up with a simulator



Zero-Knowledge Proof: More Formally
• Theorem: the protocol we just saw for 3-colorability is a ZK proof system

• Running time: yes
• Completeness: yes
• Soundness: already argued
• ZK property: need to come up with a simulator

• Simulator: 
 (1) guess which edge e = (u,v) the verifier will check
 (2) pick two random distinct colors (e.g. “red” and “green”) and color u and v in those
 (3) color all the other vertices “red”
 (4) commit to all this coloring of the graph, send the commitments to V*
 (5) V* responds with an edge e*.  
  If e* ≠ e:
    reset V* to its state before it received the commitments, and go back to step (1) 
  Else: open the commitments to the colors picked in (2)
 (6) output whatever V* outputs



ZK Proofs for Other Things

Verifier

Prover
• Prover convinces Verifier that the statement is true
• Verifier learned nothing about the solution

Theorem:  Everything provable is provable in zero-knowledge.  
[GMR85,GMW86,BGGHKMR88]

(Easy to see that any L ∈ NP has a ZK proof system, because 3-colorability is NP-complete.)



Non-Interactive ZK Proof System (NIZK) [BDMP,FLS,…]
• Setup(1l), Prove(params,x,w), Verify(params,x,p) : non-interactive algorithms

• Completeness: if x ∈ L, w is a witness, params <- Setup(1l), p <- Prove(params,x,w), then 
  Verify(params,x,p) accepts

• Soundness: 
  for all ppt A, Pr[params <- Setup(1l); (x,p) <- A(params) : x ∉ L and Verify(params,x,p) = Accept] = negligible(l)

• Zero knowledge:  there exists simulator algorithms SimSetup(1l) and SimProve(simparams,td,x) 
                                such that the following experiments’ outputs are indistinguishable for all x ∈ L, its witness w:

Real proof:  {     params <- Setup(1l);                p <- Prove(params,x,w)               :  (params,p)      }
Simulation: {(simparams,td) <- SimSetup(1l); p <- SimProve(simparams,td,x) : (simparams,p) }

• Theorem [FLS]: If trapdoor permutations exist, then NIZK proof systems exist.

Steps of the experiment Output of the experiment

Note: this definition of ZK is 
a simplification.  Many 
additional subtleties that we 
won’t get into.  
Important: soundness must 
still hold even when A has 
seen a simulated proof

I haven’t yet told you what 
trapdoor permutations are



More on NIZKs

• I haven’t shown you how they work.  And I don’t have time to do so. L
• There is a lot of research, discussion, excitement around NIZK right now.  
• There are efficient and provably secure NIZKs for languages that are 

interesting and important in practice (we will talk about them on Friday).

• And now we will see how they help us achieve public-key encryption.



Public-Key Encryption: Algorithms and Correctness

• KeyGen(1l) outputs two keys: public key PK and secret key SK
• Encrypt(PK,m) only needs the public key to output a ciphertext c
• Decrypt(SK,c) outputs the message m

• Correctness: for all m, if (PK,SK) <- KeyGen (1l) and c <- Encrypt(PK,m), 
then Decrypt(SK,c) = m.



Public-Key Encryption: Security



Recall the symmetric-key case:
• How does the adversary interact with other system participants?

Encrypt(K, 1l, 🀆) Decrypt(K, 1l, 🀆)

black boxes/oracles for encryption and
decryption
чорні скриньки/оракули 
для шифрування та дешифрування



Recall the symmetric-key case:
• How does the adversary interact with other system participants?

Encrypt(K, 1l, 🀆) Decrypt(K, 1l, 🀆)

Only need the decryption oracle: 
A can encrypt by itself



The Adversary receives PK as input and has access 
the decryption oracle:

Decrypt(SK, 🀆)

PK

Query phase
Фаза запиту ci

mi



Then the Adversary receives a challenge ciphertext

c* <- Encrypt(PK,mb)

PK

Challenge phase
m0, 
m1

c*



The Adversary queries the decryption oracle again:

Decrypt(SK, 🀆)

PK

Query phase 2
Фаза запиту 2 ci ≠ c*

mi



The Adversary produces an output:

Decrypt(SK, 🀆)

PK output

Output phase



• Let
p0 = Pr[A outputs 0 when b=0] 
p1 = Pr[A outputs 0 when b=1] 

(KeyGen, Encrypt, Decrypt) constitute a secure public-key encryption 
scheme if|p0-p1| = negligible(l)

Just as in the symmetric case:



Public-Key Encryption: Construction, Try1

• KeyGen(1l) outputs PK = one-way permutation f with hardcore bit B
                                    SK  = trapdoor, i.e. an efficient way to compute f-1

• Encrypt(PK,m) for the simplified case where m is just one bit:
                          pick a random x <- Domain(f), let c = (f(x),B(x) ⊕ m)
• Decrypt(SK,c) : let c = (y, masked_message)

          recover x = f-1(y), recover m = masked_message ⊕ B(x)

• Correctness: easy to see.

That’s what a trapdoor 
permutation is!  For 
example, RSA.



Public-Key Encryption: Construction, Try1

• Is it secure?

• If A does not have access to the decryption oracle, then it is secure 
(follows from the security of the trapdoor permutation)

• What if A has access to the decryption oracle? 



Decrypt(SK, 🀆)

PK

Query phase 2
Фаза запиту 2 ci ≠ c*

mi

Public-Key Encryption: Attack on Try1

Let c* = (y*,u*)
Form query c = (y*,1 ⊕ u*), 
receive decryption m.
Output m* = m ⊕ 1 



Public-Key Encryption: Fix Using NIZK

• KeyGen(1l) outputs PK = (params,f1,f2), where params are for NIZK, and
                  f1, f2 are OWPs with hardcore bit B
                                    SK  = trapdoor for f1
• Encrypt(PK,m) for the simplified case where m is just one bit:

               pick a random x1 <- Domain(f1), let c1 = (f1(x1),B(x1) ⊕ m) = (y1,u1)
       pick a random x2 <- Domain(f2), let c2 = (f2(x2),B(x2) ⊕ m) = (y2,u2)
               compute NIZK proof p that c1 and c2 were computed from same m
                output ciphertext c = (c1,c2,p)

• Decrypt(SK,c) : let c = (c1,c2,p). 
 Verify the proof p, reject if if doesn’t verify.
               Else let c1 = (y1,u1). Recover x1 = f-1(y1), recover m = u1 ⊕ B(x1)

• Correctness: easy to see.



Proof of Security

• Roadmap for the proof:
• Define games that are different from the security experiments
• Show that all the games are indistinguishable



Proof of Security

• Game 1: Security experiment when m = 0.

 Challenger uses f1-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ m), c2 = (f2(x2),B(x2) ⊕ m), 
                                                  and proof p



Proof of Security

• Game 1: Security experiment when m = 0.

 Challenger uses f1-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 0), c2 = (f2(x2),B(x2) ⊕ 0), 
                                                  and proof p



Proof of Security

• Game 2: Security experiment with params output by SimSetup, m=0

 Challenger uses f1-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 0), c2 = (f2(x2),B(x2) ⊕ 0), 
                                                  and SIMULATED proof p

Indistinguishable from Game 1 because of the security of NIZK



Proof of Security

• Game 3: Security experiment with params output by SimSetup and a 
mismatched challenge ciphertext

 Challenger uses f1-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 0), c2 = (f2(x2),B(x2) ⊕ 1), 
                                                  and SIMULATED proof p

Indistinguishable from Game 2 because of the security of OWP and its 
hardcore bit B



Proof of Security

• Game 4: Security experiment with params output by SimSetup and a 
mismatched challenge ciphertext

 Challenger uses f2-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 0), c2 = (f2(x2),B(x2) ⊕ 1), 
                                                  and SIMULATED proof p

Indistinguishable from Game 3 because of the soundness of NIZK even 
after seeing a simulated proof.



Proof of Security

• Game 5: Security experiment with params output by SimSetup and m=1

 Challenger uses f2-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 1), c2 = (f2(x2),B(x2) ⊕ 1), 
                                                  and SIMULATED proof p

Indistinguishable from Game 4 because of the security of OWP and its 
hardcore bit B



Proof of Security

• Game 6: Security experiment with params output by Setup and m=1

 Challenger uses f2-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 1), c2 = (f2(x2),B(x2) ⊕ 1), 
                                                  and proof p

Indistinguishable from Game 5 because of the zero-knowledge property of 
NIZK



Proof of Security

• Game 7: Security experiment with params output by Setup and m=1

 Challenger uses f1-1 in decryption queries
 Challenge ciphertext is c1 = (f1(x1),B(x1) ⊕ 1), c2 = (f2(x2),B(x2) ⊕ 1), 
                                                  and proof p

Indistinguishable from Game 6 because of the soundness property of NIZK



Today: Cryptomania
• Zero-knowledge proofs

• Definition (high level)
• Construction for an NP-complete language
• Another flavor: non-interactive zero-knowledge proof (NIZK)

• Public-key encryption: definition

• Trapdoor permutation (aka OWP with a trapdoor)
• Definition
• Examples

• Construct public-key encryption from NIZK and TDPs
• Very theoretical construction, don’t use it in practice!

• Look at practical constructions and try to make sense of them using our 
theoretical tools



Why did the two TDPs and NIZK help?

• Intuition: that way, in order to form a ciphertext, you “had to know” the 
message. 



This helps us make sense of public-key encryption 
that is used in practice, RSA-OAEP
• (picture from Wikipedia)

• In RSA-OAEP:
the public key is the RSA TDP f
to encrypt message M, you encode it 
as shown in the picture, then output
c = f(EM)



Today: Cryptomania
• Zero-knowledge proofs

• Definition (high level)
• Construction for an NP-complete language
• Another flavor: non-interactive zero-knowledge proof (NIZK)

• Public-key encryption: definition

• Trapdoor permutation (aka OWP with a trapdoor)
• Definition
• Examples

• Construct public-key encryption from NIZK and TDPs
• Very theoretical construction, don’t use it in practice!

• Look at practical constructions and try to make sense of them using our 
theoretical tools



Problems for Thursday’s problem-solving session 
with Illia
The definition of security for public-key encryption that we saw in today’s lecture is 
called “semantic security against adaptive chosen-ciphertext attack (CCA).”  
Sometimes it’s called CCA2-security, because there are two decryption query 
phases.  If we change the security game so that the adversary is not able to issue 
decryption queries, then we get a weaker notion of security, called “semantic 
security.”

(1) Prove that our Try1 cryptosystem (slide 57) is secure if f is a trapdoor 
permutation with hardcore bit B.

(2) Give a semantically secure cryptosystem that allows one to encrypt messages 
that are longer than one bit.  Prove security of your construction.


