Foundations of Cryptography.
Lecture 2: Cryptomania

Anna Lysyanskaya

Last Time: One-Way Functions and Minicrypt

\ W

Definitions of security for
* Symmetric encryption
* One-way functions
* Pseudorandom generators
* Pseudorandom functions
* Block ciphers

* Concepts: indistinguishability

 Theorems: Existence of OWF is necessary and sufficient for symmetric
encryption, PRGs, PRFs, and block ciphers.

* Minicrypt: everything you can construct from a one-way function
* One of five of Impagliazzo’s possible worlds

Today: Cryptomania

Cryptomania = world in which more sophisticated cryptography is possible

OWEFs exist, and more

Example of a cryptomania resident: public-key encryption
* Impagliazzo and Rudich showed that you cannot build public-key encryption from a OWF.

What do we need to achieve public-key encryption?
» Definition of security

e Construction — it will use OWFs enhanced with a trapdoor, and zero-knowledge proofs
* Proof of security of the construction

Today: Cryptomania

Zero-knowledge proofs
* Definition (high level)
e Construction for an NP-complete language
* Another flavor: non-interactive zero-knowledge proof (NIZK)

Public-key encryption: definition

Trapdoor permutation (aka OWP with a trapdoor)
* Definition
* Examples

Construct public-key encryption from NIZK and TDPs
* Very theoretical construction, don’t use it in practice! But helps understand proofs of security.

Look at practical constructions and try to make sense of them using our
theoretical tools

/ero-Knowledge Proof: ldea

* Two parties: a Prover and a Verifier
* Prover’s input is a theorem X and its proof W
* Verifier just has the theorem X

* How does the Prover convince the Verifier that the theorem holds?
* Obvious idea: reveal the proof W
e But what’s the fun in that? You don’t want to give away your proof, you want your friend to find it herself!

* How does the Prover convince the Verifier that the theorem holds without revealing anything
about the proof?

e Use a zero-knowledge proof!

Zero-knowledge proofs:
a crash course

Can you 3-color a graph?

1. Each vertex colored
red, green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Can you 3-color a graph?

1. Each vertex colored red,
green or blue

2. No monochromatic
edges

Is every graph 3-colorable?

Is every graph 3-colorable?

Is every graph 3-colorable?

Is every graph 3-colorable?

No...

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Let me convince
you that it’s
3-colorable!

Prover

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Please step out.

Prover

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Please come
back in, and check
one edge.

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Do you want
to check another
edge?

Prover

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Please step out.

Prover

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

Zero-knowledge proof of 3-colorability

If we repeat
100 times and you
never catch me
lying, you'll be
convinced!

[GMW 86]
Prover

Do you need paper cups?
NO. In the actual protocol, the prover “commits” to the colors.
For example, let f be a OWP, and let B be its hardcore bit.

To color the vertex v with the color(v) € {00, 01, 10}, pick random x, and x2 from {0,1}*
compute y, = f(x,), y,=f(x,), mask = B(x;)B(x,), masked color=mask & color(v)

Instead of coloring v and covering it with a paper cup, announce “my commitment to
the color of v corresponds to the unmasking of masked color fory,, y,”

To "~open,” reveal x4, X,. The verifier (1) checks that y, = f(x,), y,=f(x,) and
(2) sets color(v) = masked_color € B(x;)B(x,)

This commitment hides the color (because B is a hardcore bit), but the prover cannot
change his mind about it.

/ero-Knowledge Proof: More Formally

* First, recall what a “language” L in NP looks like:
L ={x | 3 witness w such that WitnessVerification(x,w) = Accept}

* For example:

3-Colorability = {graph G | d a way to color vertices of G into three colors so that for each
(u,v) in E(G), color(u) different from color(v) }

* Let (A,B) be a pair of interactive algorithms. Notation: let Output(A(x)<->B(x)) denote the output of
A(x) after interacting with B(y).

* A pair of algorithms (Prover, Verifier) constitute a zero-knowledge proof system for a language L if:
* Running time: Verifier is a probabilistic polynomial-time algorithm. (Often we also need Prover to be ppt)
e Completeness: if x e Land w is the “witness” to that, then Output(Verifier(1*,x) <->Prover(1*,x,w)) = Accept
« Soundness €: if x ¢ L, then for any adversarial Prover*, Pr[Output(Verifier(1*,x) <->Prover(1*x,w)) = Accept] < €

» Zero knowledge: Y adversarial verifier V*, 3 a ppt “simulator” algorithm SimV* such that V x € L, the output of
SimV*(1%,x) is indistinguishable from Output(V*(1*,x) <->Prover(1*x,w)).

The meaning of this simulator: whatever the verifier V* learns from Prover(1*x,w), it can learn by just running SimV*(1*x)
without any access to the Prover at all.

Why does this even make sense? The simulator can see “inside” the verifier, reset it to a previous state, etc.

/ero-Knowledge Proof: More Formally

* A pair of algorithms (Prover, Verifier) constitute a zero-knowledge proof system for a language L if:

Running time: Verifier is a probabilistic polynomial-time algorithm. (Often we also need Prover to be ppt)
Completeness: if x e Land w is the “witness” to that, then Output(Verifier(1*,x) <->Prover(1*,x,w)) = Accept
Soundness €: if x ¢ L, then for any adversarial Prover*, Pr[Output(Verifier(1*,x) <->Prover(1*x,w)) = Accept] < €

Zero knowledge: Y adversarial verifier V*, 3 a ppt “simulator” algorithm SimV* such that V x € L, the output of
SimV*(1%*,x) is indistinguishable from Output(V*(1*,x) <->Prover(1*x,w)).

The meaning of this simulator: whatever the verifier V* learns from Prover(1%*,x,w), it can learn by just running SimV*(1*,x)
without any access to the Prover at all.

Why does this even make sense? The simulator can see “inside” the verifier, reset it to a previous state, etc.

 Theorem: the protocol we just saw for 3-colorability is a ZK proof system

Running time: yes

Completeness: yes

Soundness: already argued

ZK property: need to come up with a simulator

/ero-Knowledge Proof: More Formally

 Theorem: the protocol we just saw for 3-colorability is a ZK proof system
* Running time: yes
* Completeness: yes
e Soundness: already argued
e ZK property: need to come up with a simulator

* Simulator:
(1) guess which edge e = (u,v) the verifier will check
(2) pick two random distinct colors (e.g. “red” and “green”) and color u and v in those
(3) color all the other vertices “red”
(4) commit to all this coloring of the graph, send the commitments to V*
(5) V* responds with an edge e*.
If e* ze:
reset V* to its state before it received the commitments, and go back to step (1)
Else: open the commitments to the colors picked in (2)
(6) output whatever V* outputs

ZK Proofs for Other Things

Theorem: Everything provable is provable in zero-knowledge.
[GMR85,GMW86,BGGHKMR88]

(Easy to see that any L € NP has a ZK proof system, because 3-colorability is NP-complete.)

e

<
1 >

* Prover convinces Verifier that the statement is true

P.

* Verifier learned nothing about the solution

Non-Interactive ZK Proof System (NIZK) [BDMPELS |

Note: this definition of ZK is
a simplification. Many
Setup(1%), Prove(params,x,w), Verify(params,x,n) : non-interactive algorithms additional subtleties that we
won’t get into.
Important: soundness must
still hold even when A has
seen a simulated proof

Completeness: if x € L, w is a witness, params <- Setup(1%), © <- Prove(params,x,w),
Verify(params,x,) accepts

Soundness:
for all ppt A, Pr[params <- Setup(1*); (x,m) <- A(params) : x € L and Verify(params,x,nt) = Accept] = negligible())

Zero knowledge: there exists simulator algorithms SimSetup(1*) and SimProve(simparams,td,x)
such that the following experiments’ outputs are indistinguishable for all x € L, its witness w:

Real proof: { params <- Setup(1*); T <- Prove(params,x,w) . (params,n) }
Simulation: {(simparams,td) <- SimSetup(1*); © <- SimProve(simparams,td,x) : (simparams,x) }

l J l J
I I

Steps of the experiment Output of the experiment
| haven’t yet told you what
trapdoor permutations are

Theorem [FLS]: If trapdoor permutations exist, then NIZK proof systems exist.

More on NIZKs

* | haven’t shown you how they work. And | don’t have time to do so. ®
* There is a lot of research, discussion, excitement around NIZK right now.

* There are efficient and provably secure NIZKs for languages that are
interesting and important in practice (we will talk about them on Friday).

* And now we will see how they help us achieve public-key encryption.

Public-Key Encryption: Algorithms and Correctness

« KeyGen(1*) outputs two keys: public key PK and secret key SK
* Encrypt(PK,m) only needs the public key to output a ciphertext c
* Decrypt(SK,c) outputs the message m

* Correctness: for all m, if (PK,SK) <- KeyGen (1%) and c <- Encrypt(PK,m),
then Decrypt(SK,c) = m.

Public-Key Encryption: Security

Recall the symmetric-key case:

* How does the adversary interact with other system participants?

black boxes/oracles for encryption and
decryption
YOPHi CKPUHbKK/OpaKynn

Encrypt(K, 1%, [) Decrypt(K, 1%, [J) A" W1dPYyBaHHA TS AewndpyBaHHs

Recall the symmetric-key case:

* How does the adversary interact with other system participants?

Only need the decryption oracle:
A can encrypt by itself

Encrybt(K, 1%, 0) Decrypt(K, 1%, [J)

The Adversary receives PK as input and has access
the decryption oracle:

Decrypt(SK,)

Query phase
da3a 3anuTty Ci

Then the Adversary receives a challenge ciphertext

c* <- Encrypt(PK,my)

Challenge phase

The Adversary queries the decryption oracle again:

Decrypt(SK,)

Query phase 2
da3a 3anuTty 2

The Adversary produces an output:

Decrypt(SK,)

Output phase

Just as in the symmetric case:

* Let
Po = Pr[A outputs 0 when b=0]
p; = Pr[A outputs 0 when b=1]

(KeyGen, Encrypt, Decrypt) constitute a secure public-key encryption
scheme if| py.p;| = negligible(\)

Public-Key Encryption: Construction, Try1l

That’s what a trapdoor
permutation is! For
example, RSA.

« KeyGen(1%) outputs PK = one-way permutation f with hardcore bit B
SK =trapdoor, i.e. an efficient way to compute f*

* Encrypt(PK,m) for the simplified case where m is just one bit:
pick a random x <- Domain(f), let c = (f(x),B(x) € m)

* Decrypt(SK,c) : let c = (y, masked _message)
recover x = f1(y), recover m = masked _message @ B(x)

* Correctness: easy to see.

Public-Key Encryption: Construction, Try1l

e |s it secure?

* If A does not have access to the decryption oracle, then it is secure
(follows from the security of the trapdoor permutation)

 What if A has access to the decryption oracle?

Public-Key Encryption: Attack on Try1l

Decrypt(SK,)

Let c* = (y*,u*)

Form query c = (y*,1 @ u*),
receive decryption m.
Outputm*=m @ 1

Query phase 2
da3a 3anuTty 2

Public-Key Encryption: Fix Using NIZK

* KeyGen(1*) outputs PK = (params,f,,f,), where params are for NIZK, and
f,, f, are OWPs with hardcore bit B
SK = trapdoor for f;

* Encrypt(PK,m) for the simplified case where m is just one bit:
pick a random x, <- Domain(f,), let ¢, = (f;(x1),B(x;) @® m) = (y,,u)
pick a random x, <- Domain(f,), let ¢, = (f,(x,),B(x,) @® m) = (y,,u,)
compute NIZK proof © that ¢; and ¢, were computed from same m
output ciphertext c = (c4,¢,,7)

* Decrypt(SK,c) : let c = (c,c,,).
Verify the proof =, reject if if doesn’t verify.
Else let ¢, = (y,,u;). Recover x, = f(y,), recover m = u; @ B(x,)

* Correctness: easy to see.

Proof of Security

* Roadmap for the proof:
* Define games that are different from the security experiments
e Show that all the games are indistinguishable

Proof of Security

* Game 1: Security experiment when m =0.

Challenger uses f,! in decryption queries
Challenge ciphertext is c; = (f1(x;),B(x;) © m), ¢, = (f;5(x5),B(x,) &© m),
and proof &

Proof of Security

* Game 1: Security experiment when m =0.

Challenger uses f,! in decryption queries
Challenge ciphertext is ¢, = (f;(x4),B(x;) @ 0), ¢, = (f,(x,),B(x;) D 0),
and proof &

Proof of Security

* Game 2: Security experiment with params output by SimSetup, m=0
Challenger uses f,! in decryption queries

Challenge ciphertext is ¢, = (f;(x4),B(x;) € 0), ¢, = (f,(x5),B(x,) €D 0),
and SIMULATED proof ©t

Indistinguishable from Game 1 because of the security of NIZK

Proof of Security

* Game 3: Security experiment with params output by SimSetup and a
mismatched challenge ciphertext

Challenger uses f;! in decryption queries
Challenge ciphertext is ¢; = (f;(x1),B(x;) @ 0), ¢, = (f,(x,),B(x,) D 1),
and SIMULATED proof ©t

Indistinguishable from Game 2 because of the security of OWP and its
hardcore bit B

Proof of Security

* Game 4: Security experiment with params output by SimSetup and a
mismatched challenge ciphertext

Challenger uses f,! in decryption queries
Challenge ciphertext is ¢; = (f;(x1),B(x;) @ 0), ¢, = (f,(x,),B(x,) D 1),
and SIMULATED proof ©t

Indistinguishable from Game 3 because of the soundness of NIZK even
after seeing a simulated proof.

Proof of Security

 Game 5: Security experiment with params output by SimSetup and m=1

Challenger uses f,! in decryption queries
Challenge ciphertext is ¢, = (f1(x4),B(x;) D 1), ¢, = (f,(x5),B(x,) D 1),
and SIMULATED proof ©t

Indistinguishable from Game 4 because of the security of OWP and its
hardcore bit B

Proof of Security

* Game 6: Security experiment with params output by Setup and m=1

Challenger uses f,! in decryption queries
Challenge ciphertext is ¢, = (f1(x4),B(x;) D 1), ¢, = (f,(x5),B(x,) D 1),
and proof &

Indistinguishable from Game 5 because of the zero-knowledge property of
NIZK

Proof of Security

 Game 7: Security experiment with params output by Setup and m=1
Challenger uses f,! in decryption queries

Challenge ciphertext is ¢, = (f1(x4),B(x;) D 1), ¢, = (f,(x5),B(x,) D 1),
and proof &

Indistinguishable from Game 6 because of the soundness property of NIZK

Today: Cryptomania

Zero-knowledge proofs
* Definition (high level)
e Construction for an NP-complete language
* Another flavor: non-interactive zero-knowledge proof (NIZK)

Public-key encryption: definition

Trapdoor permutation (aka OWP with a trapdoor)
* Definition
* Examples

Construct public-key encryption from NIZK and TDPs
* Very theoretical construction, don’t use it in practice!

Look at practical constructions and try to make sense of them using our
theoretical tools

Why did the two TDPs and NIZK help?

* Intuition: that way, in order to form a ciphertext, you “had to know” the
message.

This helps us make sense of public-key encryption
that is used in practice, RSA-OAEP

* (picture from Wikipedia
(p P) 00 Seed Hash(L) OCEPS)O L 01 |message M
* |In RSA-OAEP: C >
the public key is the RSA TDP f DB
to encrypt message M, you encode it ¥
as shown in the picture, then output > MGF ’ 69
c = f(EM)
Y
(De— MeF «——
Y Y \ 4
00 | maskedSeed maskedDB
\— ~ 7

encoded message EM

Today: Cryptomania

Zero-knowledge proofs
* Definition (high level)
e Construction for an NP-complete language
* Another flavor: non-interactive zero-knowledge proof (NIZK)

Public-key encryption: definition

Trapdoor permutation (aka OWP with a trapdoor)
* Definition
* Examples

Construct public-key encryption from NIZK and TDPs
* Very theoretical construction, don’t use it in practice!

Look at practical constructions and try to make sense of them using our
theoretical tools

Problems for Thursday’s problem-solving session
with Illia

The definition of security for public-key encryption that we saw in today’s lecture is
called “semantic security against adaptive chosen-ciphertext attack (CCA).”
Sometimes it’s called CCA2-security, because there are two decryption query
phases. If we change the security game so that the adversary is not able to issue
decryption queries, then we get a weaker notion of security, called “semantic
security.”

(1) Prove that our Tryl cryptosystem (slide 57) is secure if f is a trapdoor
permutation with hardcore bit B.

(2) Give a semantically secure cryptosystem that allows one to encrypt messages
that are longer than one bit. Prove security of your construction.

