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Abstract

In this mini-course, we discuss isoperimetric-type inequalities related to log-concave
measures (and, in particular, convex bodies). We interpret several classical inequalities
as concavity principles and employ the powerful idea of linearization to understand fur-
ther isoperimetric-type questions about functions. We will discuss inequalities, such as
the Prekopa-Leindler inequality, a Generalized form of the Log-Sobolev inequality, the
functional Ehrhard inequality, the Brascamp-Lieb inequality and Bobkov’s inequality,
as well as the phenomenon of the Gaussian isoperimetry. Several approaches to these
topics will be discussed and some novel variants will be outlined as well.

Disclaimer: these lecture notes are currently under construction and may not be
fully proofread yet. If you spot a typo, please let me know!
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Notation and preliminaries from Linear Algebra and ge-

ometry of Rn

Notation

• Rn – the n−dimensional space

• | · | or | · |k (for a set) – Lebesgue k−dimensional volume

• ⟨·, ·⟩ – the scalar product in Rn.

• For x ∈ Rn, denote x2 = ⟨x, x⟩ = |x|2.

• Bn
2 – the Euclidean ball
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• Sn−1 – the unit sphere

• A+B – Minkowski sum of sets

• For a vector x ∈ Rn, ∥x∥p = (|x1|p + · · · + |xn|p)1/p is the p-norm in Rn for p ≥ 1

• ∥x∥∞ = maxi=1,...,n |xi| is the ∞-norm

• |x| = ∥x∥2 is shorthand for Euclidean length

• Bn
p = {x ∈ Rn : ∥x∥p ≤ 1} is the p-ball in Rn

• For θ ∈ Rn \ {0}, we may consider the hyperplane

θ⊥ = {x ∈ Rn : ⟨x, θ⟩ = 0},

and the affine hyperplane

θ⊥ + tθ = {x ∈ Rn : ⟨x, θ⟩ = t}

for all t ∈ R.

• A half-space is a set of the form {x ∈ Rn : ⟨x, θ⟩ ≤ t}, for some given θ ∈ Rn \ {0}
and t ∈ R.

• A strip is a set of the form {x ∈ Rn : |⟨x − y, θ⟩| ≤ t}, for some given y ∈ Rn,
θ ∈ Rn \ {0} and t ≥ 0.

• Fix x ∈ R. Then [x] is the floor function, the largest integer which is no larger than x.

• Recall that volume in Rn is n−homogeneous, i.e. |tA| = tn|A| for any Borel-measurable
set A in Rn and any t > 0.

1 Brunn-Minkowski inequality and related concavity

principles

Many results related to convexity, high-dimensional analysis, concentration of measure, ge-
ometry, probability, and other areas are intimately connected to the following fundamental
result. It will be the cornerstone of this section and is undoubtedly one of the most impor-
tant results in this course. Much has been written about this inequality; we particularly
recommend the works of Artstein-Avidan, Giannopoulos, and Milman [1], Gardner [Ga],
and Schneider [31].
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1.1 Brunn–Minkowski Inequality and the Isoperimetric Inequality

We begin by formulating this central result:

Theorem 1.1 (Brunn–Minkowski inequality). Let K,L ⊆ Rn be Borel-measurable sets.
Then

|K + L|1/n ≥ |K|1/n + |L|1/n,

where the Minkowski sum of K and L is defined as

K + L = {x+ y : x ∈ K, y ∈ L}.

Remark 1.1. We assume Borel measurability of K and L to ensure that the set K + L is
also measurable. Lebesgue measurability alone would not suffice for this conclusion; we leave
both technical details as an exercise for readers particularly interested in measure theory.

Note that for λ > 0, we have |λK| = λn|K|. Hence, the theorem is equivalent to the
statement that for all λ ∈ [0, 1],

|λK + (1 − λ)L|1/n ≥ λ|K|1/n + (1 − λ)|L|1/n. (1)

In other words, the function K 7→ |K|1/n is concave under Minkowski addition. We will soon
see that many other functionals exhibit similar concavity or convexity properties.

Note that for all a, b ≥ 0, λ ∈ [0, 1], and p > 0,

(λap + (1 − λ)bp)1/p ≥ aλb1−λ.

Thus, taking a = |K| and b = |L|, Theorem 1.1 (equivalently, inequality (1)) implies a
dimension-free version of the Brunn–Minkowski inequality:

|λK + (1 − λ)L| ≥ |K|λ|L|1−λ, for all λ ∈ [0, 1]. (2)

In fact, the validity of (2) for all λ implies the additive form of the Brunn–Minkowski
inequality (Theorem 1.1). This implication uses the homogeneity of Lebesgue measure and
is left as an exercise.

We are now ready to prove the following:

Theorem 1.2 (the Isoperimetric inequality). For all K ⊆ Rn,

|∂K|n−1

|K|n−1
n

≥ |∂Bn
2 |n−1

|Bn
2 |

n−1
n

.
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Proof (using the Brunn–Minkowski inequality). We outline, using the Brunn-Minkowski in-
equality along with the n−homogeneity of the volume in Rn and the Newton’s binomial:

|∂K|n−1 = lim inf
ε→0

|K + εBn
2 | − |K|
ε

≥ lim inf
ε→0

(|K|1/n + |εBn
2 |1/n)n − |K|
ε

= lim inf
ε→0

(|K|1/n + ε|Bn
2 |1/n)n − |K|
ε

= lim inf
ε→0

|K| + n|K|n−1
n ε|Bn

2 |1/n +O(ε2) − |K|
ε

= n|K|
n−1
n |Bn

2 |1/n.

Rearranging gives:
|∂K|n−1

|K|n−1
n

≥ n|Bn
2 |1/n =

|∂Bn
2 |n−1

|Bn
2 |

n−1
n

,

where in the last equation we used the fact that

|Sn−1|n−1 = n|Bn
2 |n,

which follows from the polar coordinate integration:

|Bn
2 |n =

ˆ
Sn−1

ˆ 1

0

tn−1dtdθ = |Sn−1|n−1

ˆ 1

0

tn−1dt,

and it remains to note that
´ 1

0
tn−1dt = 1

n
.

We note that the equality in the Brunn–Minkowski inequality holds:

|K + L|1/n = |K|1/n + |L|1/n

if and only if K = tL + v for some t ≥ 0 and v ∈ Rn. See [31] for a proof of this equality
case characterization.

1.2 Proof of the Brunn–Minkowski Inequality (general case, due
to Lazar Lyusternik, 1935)

Following the early works of Brunn and Minkowski, the inequality was proven in full gen-
erality by Lyusternik in 1935. Subsequent proofs were given by Henstock and Macbeath
[HenMac], and by Hadwiger and Ohmann [17]. We now present this classical proof.

Step 1. Suppose K and L are coordinate boxes, i.e.,

K = [0, a1] × · · · × [0, an], L = [0, b1] × · · · × [0, bn].
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Then
K + L = [0, a1 + b1] × · · · × [0, an + bn],

and thus

|K + L| =
n∏
i=1

(ai + bi).

Note, from the AM–GM inequality:

n∏
i=1

(
ai

ai + bi

)1/n

+
n∏
i=1

(
bi

ai + bi

)1/n

≤ 1

n

n∑
i=1

ai
ai + bi

+
1

n

n∑
i=1

bi
ai + bi

= 1.

and therefore,
n∏
i=1

(ai + bi)
1/n ≥

n∏
i=1

a
1/n
i +

n∏
i=1

b
1/n
i ,

yielding |K + L| 1n ≥ |K| 1n + |L| 1n .

Step 2. Suppose K and L are finite unions of disjoint boxes. We proceed by induction
on the total number of boxes comprising K and L. The base case with two boxes was proved
in Step 1. Suppose the inequality holds for N boxes. Let H = θ⊥ + tθ be a hyperplane
avoiding at least one box of K, and define:

H+ = {x ∈ Rn : ⟨x, θ⟩ > t}, H− = Rn \H+.

By translating L, we can assume:

|K ∩H+|
|K|

=
|L ∩H+|

|L|
= a ∈ [0, 1]. (3)

By the inductional assumption, the Brunn-Minkowski inequality holds for K ∩H+ and
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L ∩H+, and for K ∩H− and L ∩H−. Using it, together with (3), we get

|K + L| ≥ |K ∩H+ + L ∩H+| + |K ∩H− + L ∩H−|
≥
(
|K ∩H+|1/n + |L ∩H+|1/n

)n
+
(
|K ∩H−|1/n + |L ∩H−|1/n

)n
=
(
a1/n|K|1/n + a1/n|L|1/n

)n
+
(
(1 − a)1/n|K|1/n + (1 − a)1/n|L|1/n

)n
= a

(
|K|1/n + |L|1/n

)n
+ (1 − a)

(
|K|1/n + |L|1/n

)n
=
(
|K|1/n + |L|1/n

)n
,

and therefore, the Brunn-Minkowski inequality holds for K and L.

Step 3. The general case follows by approximation using the definition of Borel-measurable
sets as limits of unions of boxes.

1.3 Brunn’s Concavity Principle

Definition 1.1 (Section function). Let θ ∈ Sn−1. We define the section function Aθ,K : R →
R of a convex body K ⊂ Rn in the direction θ as follows:

Aθ,K(t) = |K ∩ (θ⊥ + tθ)|n−1.

The following result is equivalent to the Brunn-Minkowski inequality in the case of convex
sets:

Theorem 1.3 (Brunn). For any convex body K, the function A
1

n−1

θ,K (t) is concave on its
support.

Proof. We aim to show that for any λ ∈ [0, 1] and any s, t in the support of Aθ,K ,∣∣K ∩
(
θ⊥ + (λs+ (1 − λ)t)θ

)∣∣ 1
n−1 ≥ λ|K ∩ (θ⊥ + sθ)|

1
n−1 + (1 − λ)|K ∩ (θ⊥ + tθ)|

1
n−1 .

Since K is convex, for all x, y ∈ K we have λx+ (1 − λ)y ∈ K. Also,

λ(θ⊥ + sθ) + (1 − λ)(θ⊥ + tθ) = θ⊥ + (λs+ (1 − λ)t)θ.
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Therefore, we get:

λ
(
K ∩ (θ⊥ + sθ)

)
+ (1 − λ)

(
K ∩ (θ⊥ + tθ)

)
⊂ K ∩

(
θ⊥ + (λs+ (1 − λ)t)θ

)
. (4)

We conclude:∣∣K ∩
(
θ⊥ + (λs+ (1 − λ)t)θ

)∣∣ 1
n−1 ≥

∣∣λ (K ∩ (θ⊥ + sθ)
)

+ (1 − λ)
(
K ∩ (θ⊥ + tθ)

)∣∣ 1
n−1

≥ λ|K ∩ (θ⊥ + sθ)|
1

n−1 + (1 − λ)|K ∩ (θ⊥ + tθ)|
1

n−1 ,

where the last inequality follows from the Brunn–Minkowski inequality in Rn−1.

Remark 1.2. For any subspace H of dimension k, the function F : H⊥ → R given by
F (y) = |K ∩ (H + y)| 1k is concave on its support. The proof is the same and is left as a
homework.

1.4 Log-Concave Functions and Measures, Borell’s Theorem, and
the Prékopa–Leindler Inequality

We start by formulating two seemingly unrelated definitions.

Definition 1.2 (Log-concave function). A function f : Rn → R is log-concave if log f is
concave:

log f(λx+ (1 − λ)y) ≥ λ log f(x) + (1 − λ) log f(y)

for all x, y ∈ Rn and 0 ≤ λ ≤ 1. Equivalently,

f(λx+ (1 − λ)y) ≥ f(x)λf(y)1−λ.

In other words, f(x) = e−V (x) where V is convex. Note that if a function is log-concave,
then its support is necessarily a convex set. Also, if f and g are log-concave, then so is fg.
Examples of log-concave functions include:

• f(x) = 1K(x), where K is a convex set;

• f(x) = e−
x2

2 ;

• f(x) = e−∥x∥qM · 1K(x) for some convex sets M and K.

Definition 1.3 (Log-concave measure). A measure µ on Rn is log-concave if suppµ has
nonempty interior and for all Borel-measurable sets K,L and all 0 ≤ λ ≤ 1,

µ(λK + (1 − λ)L) ≥ µ(K)λµ(L)1−λ.

It turns out, these notions are very closely related:
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Theorem 1.4 (Borell). A measure µ on Rn is log-concave if and only if it has a density f
with respect to Lebesgue measure (possibly with respect to Lebesgue measure on some affine
subspace), and f is a log-concave function.

Remark 1.3. Borell’s theorem generalizes the Brunn–Minkowski inequality: the density of
Lebesgue measure is 1, which is a log-concave function, and hence the theorem implies that
Lebesgue measure is log-concave — which is equivalent to the Brunn–Minkowski inequality.

One of the standard proofs of Theorem 1.4 uses the celebrated:

Theorem 1.5 (Prékopa–Leindler inequality (1970), the functional version of Brunn–Minkowski).
Fix λ ∈ [0, 1]. Let f, g, h ∈ L1(Rn). Suppose for all x, y ∈ Rn,

h(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)g(y).

Then, ˆ
e−h ≥

(ˆ
e−f
)λ(ˆ

e−g
)1−λ

.

Remark 1.4. Equivalently, letting H = e−h, F = e−f , and G = e−g, if

H(λx+ (1 − λ)y) ≥ F (x)λG(y)1−λ,

then ˆ
H ≥

(ˆ
F

)λ(ˆ
G

)1−λ

.

Derivation of Borell’s Theorem (Theorem 1.4) from the Prekopa-Leindler
inequality (Theorem 1.5).

The forward direction is left as a homework. The key is the backward direction: if f is
a log-concave function, then dµ(x) = f(x)dx is a log-concave measure. Indeed, let f(x) be
a log-concave function, let K and L be Borel-measurable sets, and let λ ∈ [0, 1]. Define:

H(z) = f(z)1λK+(1−λ)L(z), F (x) = f(x)1K(x), G(y) = f(y)1L(y).

Then, by log-concavity of f ,

H(λx+ (1 − λ)y) ≥ F (x)λG(y)1−λ,

and the Prékopa–Leindler inequality then gives:

ˆ
H ≥

(ˆ
F

)λ(ˆ
G

)1−λ

,

which amounts to
µ(λK + (1 − λ)L) ≥ µ(K)λµ(L)1−λ. □

Therefore, we are left with the task of proving the Prekopa-Leindler inequality.
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Proof of the Prékopa–Leindler Inequality

Recall the “layer-cake formula”: let f : Rn → R be a non-negative continuous function.
Then, for any measure µ on Rn, we haveˆ

Rn

f(x) dµ(x) =

ˆ ∞

0

µ({x ∈ Rn : f(x) > t}) dt. (5)

This can be proved via Fubini’s theorem in Rn+1 by computing the measure of the subgraph
of f , i.e., the set {(x, t) ∈ Rn+1 : t ≤ f(x)}, in two different ways.

We now prove the Prékopa–Leindler inequality, using Remark 1.4, by induction on the
dimension.

Step 1: n = 1. Using the layer-cake formula, we get:ˆ
R
H(t) dt =

ˆ ∞

0

|{t ∈ R : H(t) > s}| ds.

Note that
{H > s} ⊇ λ{F > s} + (1 − λ){G > s}. (6)

Using (6) and the one-dimensional Brunn–Minkowski inequality, we get:ˆ
R
H(t) dt =

ˆ ∞

0

|{t ∈ R : H(t) > s}| ds

≥
ˆ ∞

0

|λ{F > s} + (1 − λ){G > s}| ds

≥ λ

ˆ ∞

0

|{F > s}| ds+ (1 − λ)

ˆ ∞

0

|{G > s}| ds

= λ

ˆ
R
F (t) dt+ (1 − λ)

ˆ
R
G(t) dt

≥
(ˆ

R
F (t) dt

)λ(ˆ
R
G(t) dt

)1−λ

.

Step 2: Induction. Assume the claim holds for dimension n− 1. Define:

Hn(xn) :=

ˆ
Rn−1

H(x1, . . . , xn) dx1 · · · dxn−1,

and define Fn and Gn similarly. Then Fn, Gn, Hn ∈ L1(R) by Fubini’s theorem. For fixed
xn, yn ∈ R and x̄, ȳ ∈ Rn−1, the assumption of Theorem 1.5 amounts to the inequality

H(λ(x, xn) + (1 − λ)(y, yn)) ≥ F (x, xn)λG(y, yn)1−λ.

Viewing this as a function of x and y, the induction hypothesis yields:

Hn(λxn + (1 − λ)yn) ≥ Fn(xn)λGn(yn)1−λ.
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Then, apply the one-dimensional case which was verified in step 1:

ˆ
R
Hn(t) dt ≥

(ˆ
R
Fn(t) dt

)λ(ˆ
R
Gn(t) dt

)1−λ

.

Finally, by Fubini’s theorem, this gives the full result.

1.5 Borell–Brascamp–Lieb Inequality

Definition 1.4. We say a function F on Rn is p-concave if F p is concave.

It turns out that the Prékopa–Leindler inequality is a member of a more general family
of inequalities:

Theorem 1.6 (Borell–Brascamp–Lieb). Suppose p ∈ (−1/n,∞), consider functions f, g, h ≥
0 on Rn, and fix λ ∈ [0, 1].

• If p ≥ 0 and
h(λx+ (1 − λ)y) ≥ λf(x) + (1 − λ)g(y),

then (ˆ
h1/p

) p
np+1

≥ λ

(ˆ
f 1/p

) p
np+1

+ (1 − λ)

(ˆ
g1/p

) p
np+1

.

• If p < 0 and
h(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)g(y),

then (ˆ
h1/p

) p
np+1

≤ λ

(ˆ
f 1/p

) p
np+1

+ (1 − λ)

(ˆ
g1/p

) p
np+1

.

Note that the limiting case p = 0 corresponds to the Prékopa–Leindler inequality.

2 From concavity principles to isoperimetry via lin-

earizations

In what follows, we will frequently exploit the following simple idea. Suppose that F is a
functional on some reasonable class of functions, and that F is concave:

F((1 − t)f + tg) ≥ (1 − t)F(f) + tF(g).

Then, for fixed f and g, define the univariate function

α(t) = F((1 − t)f + tg) − (1 − t)F(f) − tF(g),

and observe the following:
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1. α′(0) ≥ 0 if α′(0) exists.

Indeed, concavity of F implies that α(t) ≥ 0 on [0, 1]. Also, α(0) = 0 by definition.
The conclusion follows assuming α′(t) exists on [0, ϵ] for some ϵ > 0.

2. α′′(0) ≤ 0 if α′′(0) exists.

This follows directly from the fact that F is concave, and thus d2

dt2
F(f + tg) ≤ 0.

3. If F(f) ≤ F(f0) for all f in the appropriate class, then

d

dϵ
F(f0 + ϵf)

∣∣∣∣
ϵ=0

= 0, and
d2

dϵ2
F(f0 + ϵf)

∣∣∣∣
ϵ=0

≤ 0,

provided all the derivatives are well-defined.

These observations give us a method for discovering new inequalities from existing con-
cavity principles.

Our first goal is to understand in what sense the Prékopa–Leindler inequality can be
interpreted as a concavity principle. The hypothesis of Prékopa–Leindler is that

h((1 − t)x+ ty) ≤ (1 − t)f(x) + tg(y).

What is the best possible h satisfying this inequality?

Definition 2.1 (Infimal convolution). Given functions f, g : Rn → R and t ∈ [0, 1], we define
the infimal convolution

f□tg(z) = inf
(1−t)x+ty=z

{(1 − t)f(x) + tg(y)} .

We also write
f□g(z) = inf

x+y=z
{f(x) + g(y)} .

Note that f□tg = h satisfies the condition of the Prékopa–Leindler inequality, and there-
fore: ˆ

e−f□tg ≥
(ˆ

e−f
)1−t(ˆ

e−g
)t
.

We also observe that f□0g = f and f□1g = g, so in a certain sense the infimal convolution
interpolates between f and g. We want to find a transform T which linearizes the infimal
convolution, i.e.

T ((1 − t)f + tg) = f□tg

Then the Prekopa-Leindler inequality would amount to concavity of log
´
e−T (f) on the

appropriate linear space of functions.

Example 2.1. When K,L are convex bodies, consider the infimal convolution of their convex
indicator functions:

1
∞
K□1∞

L (z) = inf
x+y=z

{1∞
K (x) + 1

∞
L (y)} = 1

∞
K+L(z).

Recall that hK+L = hK + hL, so if we would like T such that T (f□g) = F(f) + F(g),
then a good hint is that we want T : 1∞

K 7→ hK .
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2.1 Legendre Transform

We start by defining the Legendre transform of a function.

Definition 2.2. For f : Rn → R = R ∪ {∞}, we define

f ∗(x) = sup
y∈Rn

{⟨x, y⟩ − f(y)}.

Example 2.2. 1. For a convex body K,

(1∞
K )∗(x) = sup

y∈Rn

{⟨x, y⟩ − 1
∞
K (y)}

= sup
y∈K

{⟨x, y⟩}

= hK(x).

2.

|x|∗(x) = sup
y∈Rn

{⟨x, y⟩ − |y|}

= sup
t≥0

{t|x| − t}

=

{
0 if |x| ≤ 1,
∞ if |x| > 1

= 1
∞
Bn

2
(x).

3. Does Legendre transform have any fixed points? When is f ∗ = f? Turns out, this
happens when f(x) = |x|2/2. Indeed,

f ∗(x) = sup
y∈Rn

{⟨x, y⟩ − 1
2
|y|2}

= sup
t≥0

{t|x|2 − 1
2
t2|x|2}.

The function inside the supremum is quadratic in t and is maximized when t = 1. Thus

f ∗(x) = 1
2
|x|2.

4. More generally, it is left as a homework to verify that for a convex body K in Rn,(
∥x∥pK
p

)∗

=
∥x∥qKo

q
,

where Ko = {x ∈ Rn : ⟨x, y⟩ ≤ 1 ∀y ∈ K} is the so-called polar body of K, and
1
p

+ 1
q

= 1, i.e. p and q are Hölder duals. Here the Minkowski functional of K is

defined as ∥x∥K = inf{t > 0 : x
t
∈ K}, in other words, when K is symmetric then it

is the norm on Rn for which K is the unit ball.
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5. Consider f(x) = C, a constant function. Then

f ∗(x) = sup
y∈Rn

{⟨x, y⟩ − C} = ∞.

This does not depend on the choice of constant C.

6. Consider

f(y) =

{
−
√

1 − |y|2 if |y| ≤ 1,
∞ if |y| > 1.

Then

f ∗(x) = sup
y∈Rn

{⟨x, y⟩ − f(y)}

= sup
|y|≤1

{
⟨x, y⟩ +

√
1 − |y|2

}
= sup

t∈[0,|x|−1]

{
t|x|2 +

√
1 − t2|x|2

}
.

Optimizing by hand:

d

dt

(
t|x|2 +

√
1 − t2|x|2

)
= |x|2 − t|x|2√

1 − t2|x|2
= 0,

which gives
t√

1 − t2|x|2
= 1 ⇒ t =

1√
1 + |x|2

.

Plugging this back in:

f ∗(x) =
|x|2√

1 + |x|2
+

√
1 − |x|2

1 + |x|2

=
|x|2√

1 + |x|2
+

√
1

1 + |x|2

=
|x|2 + 1√
1 + |x|2

=
√

1 + |x|2,

which is the upper branch of a hyperbola with asymptotes y = ±x.

Lemma 2.1 (Properties of the Legendre transform). Let ϕ : Rn → R. Then:

1. ϕ∗ is convex (as it is a supremum of affine functions).

2. If ϕ is convex, then (ϕ∗)∗ = ϕ.
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3. For any a ∈ R, (ϕ+ a)∗(x) = ϕ∗(x) − a.

4. If f(x) ≤ g(x), then f ∗(x) ≥ g∗(x).

5. (af)∗(x) = af ∗(x
a
) for a > 0.

Proof. Home work!

Next, we are ready to prove the property which we were looking for in the first place.

Proposition 2.1 (Legendre transform linearizes infimal convolution). For convex functions
f, g,

(f□g)∗ = f ∗ + g∗.

Proof. This is a direct calculation:

(f□g)∗(x) = sup
y∈Rn

{
⟨x, y⟩ − inf

a+b=y
[f(a) + g(b)]

}
= sup

a,b∈Rn

{⟨x, a+ b⟩ − f(a) − g(b)}

= sup
a∈Rn

{⟨x, a⟩ − f(a)} + sup
b∈Rn

{⟨x, b⟩ − g(b)}

= f ∗(x) + g∗(x).

Proposition 2.2 (Legendre transform of smooth functions). Let V : Rn → R be strictly
convex and C2. Then:

1. V (x) + V ∗(∇V (x)) = ⟨x,∇V (x)⟩,

2. ∇V (∇V ∗(x)) = x, i.e., ∇V ◦ ∇V ∗ = Id,

3. ∇2V ∗(∇V (x)) = [∇2V (x)]−1.

Proof. 1. From the definition of V ∗, at the optimal point y = ∇V (x), we have

V ∗(∇V (x)) = ⟨x,∇V (x)⟩ − V (x),

which rearranges to give the identity.

2. Taking gradients of both sides in (1), we get

∇2V (x) · ∇V ∗(∇V (x)) = x,

hence ∇V ∗(∇V (x)) = x.

3. Differentiating again yields the identity for the Hessians – we leave the details as an
exercise.

Remark 2.1. Relation (2) in Proposition 2.2 implies that V ∗∗ = V , i.e., the involution
property of the Legendre transform, under the assumptions that V is C2 and finite everywhere.
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2.2 Generalized Log-Sobolev Inequality

Recall that the Prékopa-Leindler inequality can be written as

ˆ
e−f□tg ≥

(ˆ
e−f
)t(ˆ

e−g
)1−t

.

By replacing the functions with their Legendre transforms, and using the fact that

(tf + (1 − t)g)∗ = f ∗□tg
∗,

we obtain the following inequality (for which, in fact, convexity is not needed):

ˆ
e−(tf+(1−t)g)∗ ≥

(ˆ
e−f

∗
)t(ˆ

e−g
∗
)1−t

.

This convenient formulation was noted by Cordero-Erausquin and Klartag [13]. In other
words, log

´
e−f

∗
is a concave functional on the space of reasonable functions (for which the

corresponding integrals exist).

Remark 2.2. As per [13], note also the dual fact: the functional log
´
e−f is convex by

Hölder’s inequality.

Now, let

α(t) = log

ˆ
e−((1−t)f+tg)∗ − (1 − t) log

ˆ
e−f

∗ − t log

ˆ
e−g

∗
.

By the Prekopa-Leindler inequality, α(t) ≥ 0, and note also that α(0) = 0, and from these
two facts we conclude that α′(0) ≥ 0. We will compute this derivative explicitly, and for
this, we need:

Lemma 2.2. Let Vt(x) be a family of functions on Rn for t ∈ [0, 1] such that Vt ∈ C2(Rn,R)
and Vt(x) is convex for each t. Then

d

dt
V ∗
t (x) = −V̇t(∇V ∗

t (x));

d2

dt2
V ∗
t (x) = −V̈t(∇V ∗

t (x)) + ⟨(∇2Vt(x))−1∇[V̇t|∇V ∗
t (x)],∇[V̇t|∇V ∗

t (x)]⟩.

Proof. We will only show the first identity, and the second one is left as a home work
(Question 4.12). Recall the following duality formula for the Legendre transform:

Vt(x) + V ∗
t (∇Vt) = ⟨∇Vt, x⟩.

Differentiating both sides with respect to t, we get

V̇t(x) +
d

dt
V ∗
t (∇Vt) + ⟨∇V ∗

t (∇Vt),∇V̇t⟩ = ⟨∇V̇t, x⟩.
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Now using ∇V ∗
t ◦ ∇Vt = x, the above identity becomes

V̇t(x) +
d

dt
V ∗
t (∇Vt) + ⟨x,∇V̇t⟩ = ⟨∇V̇t, x⟩,

which yields
d

dt
V ∗
t (∇Vt) = −V̇t(x).

It remains to set y = ∇Vt and use again ∇V ∗
t ◦ ∇Vt = x to complete the proof.

We are ready to prove an inequality which can be seen as a version of Minkowski’s first
inequality:

Theorem 2.1 (Minkowski’s first inequality for functions). Suppose F,G are convex and´
e−F =

´
e−G. Then ˆ

G∗(∇F )e−F ≥
ˆ
F ∗(∇F )e−F ,

and the left-hand side is minimized when G = F .

Proof. Recall that

α(t) = log

ˆ
e−((1−t)f+tg)∗ − (1 − t) log

ˆ
e−f

∗ − t log

ˆ
e−g

∗
,

and by Prekopa-Leindler inequality, α(t) ≥ 0, and since α(0) = 0, we deduce that α′(0) ≥ 0.
Let us now compute:

α′(0) =
1´
e−f∗

·
ˆ

−e−f∗ · d
dt

((1 − t)f + tg)∗
∣∣∣∣
t=0

+ log

´
e−f

∗

´
e−g∗

(7)

=
1´
e−f∗

·
ˆ

−e−f∗ · (f − g)(∇f ∗) + log

´
e−f

∗

´
e−g∗

. (8)

When f and g are convex, let F = f ∗ and G = g∗. The fact that α′(0) ≥ 0 amounts to the
inequality: ˆ

−e−F · (F ∗ −G∗)(∇F ) +

ˆ
e−F · log

´
e−F´
e−G

≥ 0. (9)

It remains to consider the partial case
´
e−F =

´
e−G.

Remark 2.3. Note that Theorem 2.11 implies the classical Minkowski’s first inequality:

V1(K,L) ≥ |K|
n−1
n |L|

1
n ,

where the so-called mixed volume V1(K,L) = 1
n
d
dt
|K + tL|. Indeed, it suffices to show this

inequality in the case when |K| = |L|, and the rest follows by homogeneity; and the case
|K| = |L| follows if we plug F = 1∞

K and G = 1∞
L (we leave the details to the curious reader).

This is not surprising, in a way: the Prekopa-Leindler inequality is the functional form of the
Brunn-Minkowski inequality, and Minkowksi’s first inequality is traditionally deduced from
the Brunn-Minkowski in the same way as Theorem 2.11 from Prekopa-Leindler. This should
give an intuition about the isoperimetric nature of Theorem 2.11.
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Continuing with (9), we can use part 1 from the Proposition 2.2:

ˆ
F ∗(∇F )e−F =

ˆ
(⟨∇F, x⟩ − F (x))e−F .

Note that
´
⟨∇F (x), x⟩e−F = −

´
⟨∇e−F , x⟩, so we use integration by parts:

ˆ
⟨∇F (x), x⟩e−F = −

ˆ
⟨∇e−F , x⟩ =

ˆ
e−F · ∆

x2

2
= n

ˆ
e−F .

Using the above, we note that the following inequality is equivalent to (9):

Theorem 2.2 (Generalized Log-Sobolev Inequality). If F,G are convex functions, then

ˆ
G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F +

ˆ
e−F log

´
e−F´
e−G

.

Note that the equality holds if F = G.

Corollary 2.1. If F,G are convex functions and
´
e−F =

´
e−G, then

ˆ
G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F .

Remark 2.4. The derivation of the classical Log-Sobolev inequality (which we will discuss
shortly) using linearization of the Prékopa-Leindler inequality was first done by Bobkov and
Ledoux.

2.3 Reformulations and Notable Partial Cases of the Generalized
Log-Sobolev Inequality

Now let us state a reformulation of Theorem 2.2. Consider ϕ = e−F for some convex F .
Then F = − log ϕ and ∇F = −∇ϕ/ϕ. Assume G is convex and

´
e−G = 1, then Theorem

2.2 can be rewritten as
ˆ
G∗
(
−∇ϕ

ϕ

)
ϕ ≥ n

ˆ
ϕ+

ˆ
ϕ log ϕ−

(ˆ
ϕ

)
log

(ˆ
ϕ

)
.

Definition 2.3 (Entropy). If dµ is a measure on Rn, then the entropy of a function ϕ with
respect to the measure µ is defined as

Entµ(ϕ) :=

ˆ
ϕ log ϕ dµ−

(ˆ
ϕ dµ

)
log

(ˆ
ϕ dµ

)
.

When µ is Lebesgue, we write Ent(ϕ) for simplicity.
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Remark 2.5. By Jensen’s inequality, using the convexity of t log t, we get Entµ(ϕ) ≥ 0 for
any probability measure µ.

Theorem 2.3 (Reformulation of the Generalized Log-Sobolev Inequality). For any log-
concave function ϕ and convex function G with

´
e−G = 1, we have

ˆ
G∗
(
−∇ϕ

ϕ

)
ϕ ≥ n

ˆ
ϕ+ Ent(ϕ).

We derive, by plugging in G∗(x) = |x| − log |Bn
2 |:

Corollary 2.2 (L1-Sobolev inequality, Bobkov–Ledoux, 2000). For a log-concave function
ϕ,

Ent(ϕ) + Cn

ˆ
ϕ ≤
ˆ

|∇ϕ|,

where Cn = n+ log |Bn
2 |.

At last, by plugging in G∗(x) = |x|2
2

− n log
√

2π, we obtain the classical Log-Sobolev
inequality:

Corollary 2.3 (Classical Lebesgue Log-Sobolev inequality, first form).

(1st form) Ent(ϕ) + n log(
√

2πe)

ˆ
ϕ ≤ 1

2

ˆ
|∇ϕ|2

ϕ
.

Note that
´ |∇ϕ|2

ϕ
is called the (Lebesgue) Fisher information. By substituting ϕ = f 2,

one can also write:

Corollary 2.4 (Classical Lebesgue Log-Sobolev inequality, second form).

(2nd form) Ent(f 2) + n log(
√

2πe)

ˆ
f 2 ≤ 2

ˆ
|∇f |2.

Remark 2.6. In Corollaries 2.3 and 2.4, one does not need to assume that ϕ is log-
concave—see homework.

We also note, by plugging in G∗ = |x|p + C(n, p):

Corollary 2.5 (Lp-Sobolev inequality).

Ent(fp) + Cn,p

ˆ
fp ≤ pp−1

ˆ
|∇f |p,

where Cn,p = n− log
(
|Sn−1| ·

´∞
0
tn−1e−t

p/qdt
)
, with 1

p
+ 1

q
= 1.

Finally, we state:
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Theorem 2.4 (Gaussian Log-Sobolev inequality). Let dγ be the standard Gaussian measure
in Rn, and let g ∈ W 1,2(dγ) be log-concave, then

Entγ(g
2) ≤ 2

ˆ
|∇g|2dγ.

Remark 2.7. Log-concavity assumption on g is not needed—see homework.

Remark 2.8. Theorem 2.4 is equivalent to Corollary 2.4 by choosing g = (2π)
n
4 e

|x|2
4 f . See

homework.

Remark 2.9. The function g = 1 gives the equality case in Theorem 2.4.

Remark 2.10. Theorem 2.4 (or Corollary 2.3, since they are equivalent) implies the Lebesgue
Sobolev inequality:

n|Bn
2 |

1
n

(ˆ
Rn

|f |
n−1
n dx

) n
n−1

≤
ˆ
Rn

|∇f |dx,

which holds for all smooth f such that the integral converges.

Remark 2.11. The inequality also holds on the sphere Sn−1, which actually implies Theorem
2.4: ˆ

Sn−1

f 2 log f 2 −
(ˆ

Sn−1

f 2

)
log

(ˆ
Sn−1

f 2

)
≤ 2

ˆ
Sn−1

|∇Sn−1f |2.

Lastly, we mention the following fact (whose proof is left as a homework problem):

Theorem 2.5 (Generalized Log-Sobolev inequality for log-concave measures). Let dµ =
e−V dx be a log-concave measure and F,G be convex functions such that

´
e−Gdµ = 1. Then

Entµ(e−F ) + n

ˆ
e−Fdµ−

ˆ
⟨∇V, x⟩e−Fdµ ≤

ˆ
G∗(∇F )e−Fdµ.

Proof. Homework!

2.4 The p-Beckner Inequality

We mention, without proof:

Theorem 2.6 (p-Beckner inequality). For f ∈ W 1,2(Rn, γ) and p ∈ [1, 2),

ˆ
f 2dγ −

(ˆ
|f |pdγ

) 2
p

≤ (2 − p)

ˆ
|∇f |2dγ.
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This result implies the so-called Gaussian Poincaré inequality when p = 1:

ˆ
f 2dγ −

(ˆ
fdγ

)2

≤
ˆ

|∇f |2dγ.

We will formally prove this fact soon. Also, Beckner’s inequality implies the Gaussian Log-
Sobolev inequality: one can obtain

Entγ(f) ≤ 2

ˆ
|∇f |2dγ

by letting p→ 2 in Theorem 2.6 and taking the derivative; see homework.

Remark 2.12. The p-Beckner inequality is stronger when p is bigger. In other words, the
Gaussian Log-Sobolev inequality is the strongest inequality in the family of all p-Beckner
inequalities.

Remark 2.13. The analogous inequality is also known to hold on the sphere Sn−1.

Below we fix a log-concave probability measure dµ = e−Gdx on Rn, i.e., we assume that
G is a smooth convex function and

´
e−G = 1.

Definition 2.4 (Variance). The variance of a function ϕ with respect to µ is defined as

Varµ(ϕ) :=

ˆ
ϕ2 dµ−

(ˆ
ϕ dµ

)2

.

Note that the variance of a constant function is zero. Also, variance is invariant under
adding constants to ϕ. In a sense, variance measures “how far” ϕ is from a constant function.

2.5 A few words about the Laplace operator with respect to log-
concave measures

Definition 2.5 (Laplace operator associated to µ). Let µ be a log-concave measure with
density e−V on Rn. Here V is a convex function. For a “reasonable” function u,

Lµu := ∆u− ⟨∇V,∇u⟩.

Example 2.3. 1. If µ is Lebesgue measure, then Lµu = ∆u.

2. If µ is Gaussian, then Lµu = ∆u − ⟨x,∇u⟩, and it is called is called the Orn-
stein–Uhlenbeck operator.

Lemma 2.3 (Integration by parts). If u, v ∈ C2(Rn) and the integrals converge, then
ˆ
uLµv dµ = −

ˆ
⟨∇u,∇v⟩ dµ.
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Proof. Using classical integration by parts
´
f∆g = −

´
⟨∇f,∇g⟩, we compute:ˆ

uLµv dµ =

ˆ
(ue−V )∆v −

ˆ
u⟨∇V,∇v⟩e−V

= −
ˆ

⟨∇(ue−V ),∇v⟩ −
ˆ
u⟨∇V,∇v⟩e−V

= −
ˆ

⟨∇u,∇v⟩e−V +

ˆ
u⟨∇V,∇v⟩e−V −

ˆ
u⟨∇V,∇v⟩e−V

= −
ˆ

⟨∇u,∇v⟩ dµ.

2.6 A short and non-standard proof sketch of integration by parts

We now give a non-standard sketch of the integration by parts formula using a change of
variables argument. This works for Lebesgue measure and more generally for log-concave
measures.

Lemma 2.4 (Integration by parts via change of variables). Let dµ = e−V dx, with Lµu =
∆u− ⟨∇V,∇u⟩, and let f, g : Rn → R, with g smooth and bounded. Thenˆ

f · Lµg dµ = −
ˆ
⟨∇f,∇g⟩ dx.

In particular, when V = 0 (i.e., for Lebesgue measure),ˆ
f · ∆g dx = −

ˆ
⟨∇f,∇g⟩ dx.

Proof. Consider the change of variable x = y + t∇g(y), whose Jacobian is det(Id + t∇2g).
Then: ˆ

f(x) dµ(x) =

ˆ
f(y + t∇g(y)) e−v(y+t∇g(y)) det(Id + t∇2g) dy.

Since the left-hand side is independent of t, differentiating with respect to t gives:

d

dt

ˆ
f(y + t∇g(y))e−V (y+t∇g(y)) det(Id + t∇2g) dy

∣∣∣∣
t=0

= 0.

Differentiating under the integral:

0 =

ˆ (
⟨∇f,∇g⟩e−V − f⟨∇V,∇g⟩e−V + f · ∆g e−V

)
dy.

This implies: ˆ
f · Lµg dµ = −

ˆ
⟨∇f,∇g⟩ dµ.
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2.7 The Derivation of the Brascamp–Lieb Inequality from the
Generalized Log-Sobolev Inequality

The idea: Recall that we obtained the Generalized Log-Sobolev inequality from the Prékopa–Leindler
inequality by taking the first derivative near the point of minimum. Now we will continue
with this approach: derive new inequalities by taking further derivatives of Prékopa–Leindler
(or Generalized Log-Sobolev) around the point of maximum.

Recall the Generalized Log-Sobolev inequality: For convex functions F,G with
´
e−G = 1,

ˆ
G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F −

ˆ
e−F log

ˆ
e−F ,

with equality when F = G. To take the derivative around this point, let F = G + tϕ and
define

β(t) :=

ˆ
G∗(∇G+ t∇ϕ)e−G−tϕ− n

ˆ
e−G−tϕ +

ˆ
(G+ tϕ)e−G−tϕ +

ˆ
e−G−tϕ log

ˆ
e−G−tϕ.

We have β(t) ≥ 0 and β(0) = 0. We will see that also β′(0) = 0 (as expected at a point of
minimum), and this will imply that β′′(0) ≥ 0, which leads to a beautiful inequality called
the Brascamp–Lieb inequality.

1. Write the Taylor expansion of G∗ up to second order:

G∗(∇G+ t∇ϕ) = G∗(∇G) + t⟨∇G∗(∇G),∇ϕ⟩ +
t2

2
⟨∇2G∗(∇G)∇ϕ,∇ϕ⟩ + o(t2).

From now on, we drop all o(t2) terms.
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2. Use e−δ = 1 − δ + δ2

2
to obtain

e−G−tϕ = e−G(1 − tϕ+
t2

2
ϕ2).

Combining this with log(1 + δ) = δ − δ2

2
and using

´
e−G = 1, we get

log

(ˆ
e−G−tϕ

)
= log

(
1 − t

ˆ
ϕe−G +

t2

2

ˆ
ϕ2e−G

)
= −t

ˆ
ϕe−G +

t2

2

ˆ
ϕ2e−G − t2

2

(ˆ
ϕe−G

)2

. (∗)

Using the variance notation, (∗) becomes

log

(ˆ
e−G−tϕ

)
= −t

ˆ
ϕ dµ+

t2

2
Varµ(ϕ).

Now compute each term in β(t):
First term:
ˆ
G∗(∇G+ t∇ϕ)e−G−tϕ =

ˆ (
G∗(∇G) + t⟨∇G∗(∇G),∇ϕ⟩ +

t2

2
⟨∇2G∗(∇G)∇ϕ,∇ϕ⟩

)
× (1 − tϕ+

t2

2
ϕ2) dµ

=

ˆ
G∗(∇G)dµ+ t

ˆ
(⟨∇ϕ, x⟩ − ϕG∗(∇G))dµ

+
t2

2

ˆ (
⟨(∇2G)−1∇ϕ,∇ϕ⟩ + ϕ2G∗(∇G) − 2ϕ⟨∇ϕ, x⟩

)
dµ.

The remaining terms combine to:

− n

ˆ
e−G−tϕ +

ˆ
(G+ tϕ)e−G−tϕ +

ˆ
e−G−tϕ log

ˆ
e−G−tϕ

= −n+

ˆ
Gdµ+ t(n

ˆ
ϕdµ−

ˆ
ϕGdµ) +

t2

2

(ˆ
(G− n)ϕ2dµ− Varµ(ϕ)

)
.

Putting things together:

• By the duality formula G+G∗(∇G) = ⟨∇G, x⟩, and
´
⟨∇G, x⟩dµ = n, we have

ˆ
G∗(∇G)dµ = n−

ˆ
Gdµ.

This shows β(0) = 0.
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• Using integration by parts (Lemma 2.3), one shows that

ˆ
(⟨∇ϕ, x⟩ − ϕG∗(∇G))dµ+ n

ˆ
ϕdµ−

ˆ
ϕGdµ = 0,

so β′(0) = 0.

• Therefore, from the second-order terms we obtain:

ˆ (
⟨(∇2G)−1∇ϕ,∇ϕ⟩ + ϕ2G∗(∇G) − 2ϕ⟨∇ϕ, x⟩

)
dµ+

ˆ
(G− n)ϕ2dµ− Varµ(ϕ) ≥ 0.

• Finally, we show that

ˆ
(ϕ2G∗(∇G) − 2ϕ⟨∇ϕ, x⟩)dµ+

ˆ
(G− n)ϕ2dµ = 0,

using the duality formula and Lemma 2.3.

Hence we conclude:

Theorem 2.7 (Brascamp–Lieb inequality, 1976). Let G be a strictly convex function with´
e−G = 1, and let dµ = e−Gdx. Then for any locally Lipschitz function ϕ, we have

Varµ(ϕ) ≤
ˆ
⟨(∇2G)−1∇ϕ,∇ϕ⟩dµ.

Remark 2.14 (Brascamp–Lieb inequality is the local form of Prékopa–Leindler!). This
inequality is equivalent to:

d2

dt2
log

ˆ
e−(f+tg)∗ ≤ 0,

by substituting G = f ∗ and ϕ = g(∇f ∗). In fact, Brascamp–Lieb also implies Prékopa–Leindler
”by integration”; see homework.

Remark 2.15. Equality holds in the Brascamp–Lieb inequality when ϕ = ⟨∇G, θ⟩ for any
θ ∈ Rn.

Remark 2.16. One might try to iterate the linearization idea, setting ϕ = ⟨∇G, θ⟩ + ϵf ,
but this does not yield further inequalities. The Brascamp–Lieb inequality is ”the end of the
line”; see homework.

Corollary 2.6 (Gaussian Poincaré inequality). If dµ = dγ is the Gaussian measure, then
∇2G = Id, and the inequality becomes:

Varγ(ϕ) ≤
ˆ

|∇ϕ|2dγ.
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Remark 2.17. This implies that the first eigenvalue of Lγ is 1. The corresponding eigen-
functions are linear: Lγ⟨x, θ⟩ = −⟨x, θ⟩.

Remark 2.18. One may deduce this inequality also from the classical Gaussian Log-Sobolev
inequality using simpler calculations; see homework.

Remark 2.19 (An important observation about Brascamp–Lieb). If G = V + W and
dν = e−(V+W )dx, then:

Varν(ϕ) ≤
ˆ
⟨(∇2V )−1∇ϕ,∇ϕ⟩dν,

provided V,W are convex.

Corollary 2.7. Let dµ = e−V dx be a log-concave measure and K ⊂ Rn a convex body. Then
for any sufficiently regular function ϕ,

1

µ(K)

ˆ
K

ϕ2dµ−
(

1

µ(K)

ˆ
K

ϕdµ

)2

≤ 1

µ(K)

ˆ
K

⟨(∇2V )−1∇ϕ,∇ϕ⟩dµ.

Corollary 2.8 (Extension of the Gaussian Poincaré inequality). If dµ = e−V dx is a proba-
bility measure and ∇2V ≥ k · Id, then

Varµ(ϕ) ≤ 1

k

ˆ
|∇ϕ|2dµ.

2.8 Dimensional Extensions of Generalized Log-Sobolev and Bras-
camp–Lieb Inequalities

Recall the following corollary of the Borell–Brascamp–Lieb inequality:

Corollary 2.9. For p ∈ [−1/n, 0] and f, g convex, the function(ˆ
Rn

(f ∗ + tg∗)1/p
) p

np+1

is concave in t.

Corollary 2.10 (Bolley, Gentil, Guillin [8]). For q ∈ (−∞,−n], and a probability measure
dµ = e−V dx satisfying

∇2V − ∇V ⊗∇V
q

⪰ 0,

for all locally Lipschitz g, we have

ˆ
(g · eV/q)2 dµ−

(ˆ
g · eV/q dµ

)2

≤ −q
−q + 1

ˆ 〈(
∇2V − ∇v ⊗∇V

q

)−1

∇g,∇g

〉
dµ.
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Remark 2.20. When q → −∞, we recover Brascamp–Lieb. When q = −n, we obtain

ˆ (
g · e−V/n

)2
dµ−

(ˆ
g · e−V/n dµ

)2

≤ n

n+ 1

ˆ 〈(
∇2V +

∇v ⊗∇V
n

)−1

∇g,∇g

〉
dµ.

Theorem 2.8 (Bolley, Cordero-Erausquin, Fujita, Gentil, Guillin [9]). Let h, g, w be Borel-
measurable functions satisfying for all x, y ∈ Rn and t ∈ [0, 1],

h((1 − t)x+ ty) ≤ (1 − t)g(x) + tw(y),

and
´
w−n =

´
g−n = 1. Thenˆ

h1−n ≥ (1 − t)

ˆ
g1−n + t

ˆ
w1−n.

Corollary 2.11 (Convex Sobolev inequality, extension from [9]). Let n ≥ 2, and let w : Rn →
(0,∞) satisfy lim infx→∞

w(x)
∥x∥γ > 0 for some γ > n

n−1
. For nonnegative g : Rn → R such that´

g−n =
´
w−n = 1, we have ˆ

w∗(∇g) g−n ≥ 1

n− 1

ˆ
w1−n.

Remark 2.21. Plug in

w(x) =

(
1 +

|x|q

q

)
Cq, g = f

p
p−n ,

to recover the Sobolev inequality:

∥f∥p∗ ≤
∥hp∥p∗(´
∥∇hp∥p

)1/p (ˆ ∥∇f∥p
)1/p

,

where hp(x) =
(

1 + |x|
p

p−1

) p−n
p

and p∗ = np
n−p .

2.9 Homework

Question 2.1 (2 points). a) Show that if K and L are Borel measurable, then K + L is
Borel measurable.
b) Find an example of K and L that are Lebesgue measurable but such that K + L is not
Lebesgue measurable.

Question 2.2 (1 point). Below, Su stands for Steiner symmetrization with respect to u⊥;
K denotes a convex body in Rn with non-empty interior. Show that:
a) Su(aK) = aSu(K) for all a > 0;
b) If K ⊂ L, then Su(K) ⊂ Su(L); conclude that Su(K) is continuous with respect to the
Hausdorff metric;
c) Su(K) + Su(L) ⊂ Su(K + L).
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Question 2.3 (1 point). Recall that for a compact set A ⊂ Rn, the diameter is defined as

diam(A) = max
x,y∈A

|x− y|.

Prove that
diam(Su(K)) ≤ diam(K).

Conclude the isodiametric inequality: if the volume of a set is fixed, its diameter is minimized
by a Euclidean ball.

Question 2.4 (1 point). Prove that the Steiner symmetrization decreases the perimeter of a
convex set. Note that this gives another proof of the isoperimetric inequality for convex sets.

Question 2.5 (1 point). Recall that for a convex set K ⊂ Rn, the in-radius is

r(K) = sup{t > 0 : ∃y ∈ Rn such that y + tBn
2 ⊂ K},

and the circumradius is

R(K) = inf{t > 0 : ∃y ∈ Rn such that K ⊂ y + tBn
2 }.

a) Prove that r(Su(K)) ≥ r(K).
b) Prove that R(Su(K)) ≤ R(K).
Conclude that the Euclidean ball maximizes the in-radius and minimizes the circumradius
among convex bodies of fixed volume.

Question 2.6 (2 points). Prove the Urysohn inequality. Define the mean width of a convex
body K as

w(K) =
2

|Sn−1|

ˆ
Sn−1

hK(θ) dθ.

Show that if |K| = |Bn
2 |, then w(K) ≥ 2.

Hint: use the Brunn–Minkowski inequality and Steiner symmetrization.

Question 2.7 (1 point). Fix Borel measurable sets K,L ⊂ Rn. Confirm the following
implication (discussed in class): if for every λ ∈ [0, 1],

|λK + (1 − λ)L| ≥ |K|λ|L|1−λ,

then it follows that
|λK + (1 − λ)L|

1
n ≥ λ|K|

1
n + (1 − λ)|L|

1
n .

Question 2.8 (1 point). Show that for a, b > 0, one has

(λap + (1 − λ)bp)
1
p → aλb1−λ as p→ 0.
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Question 2.9 (2 points). a) Let p ≥ − 1
n
, and suppose functions f , g, and h on Rn satisfy

h(λx+ (1 − λ)y) ≥ ((1 − λ)fp(x) + λgp(y))
1
p .

Show that ˆ
h ≥

(
(1 − λ)

(ˆ
f

) p
np+1

+ λ

(ˆ
g

) p
np+1

)np+1
p

.

Hint: try a proof similar to Lyusternik’s proof of the Brunn–Minkowski inequality.
b) Conclude that if a measure’s density is supported on a convex set with non-empty interior
and is p-concave, then the measure is p

np+1
-concave.

c) Deduce that if the density of a measure µ on Rn is p-concave, then the density of any
marginal measure πH(µ) is p

kp+1
-concave, where H is an (n− k)-dimensional subspace (gen-

eralizing Brunn’s principle).

Question 2.10 (2 points). A function f on Rn is called unconditional if it is invariant
under coordinate reflections: f(ϵ1x1, . . . , ϵnxn) = f(x) for all ϵi ∈ {−1, 1}. A set K is called
unconditional if 1K is unconditional.

Suppose K is an unconditional convex body and V is an unconditional convex function
on Rn. Define the measure dµ(x) = e−V (x) dx. Show that log µ(etK) is a concave function
of t ∈ R.
Hint: Pass the integration to the positive orthant {x ∈ Rn : xi ≥ 0 ∀i} and use a change of
variables in the Prékopa–Leindler inequality, setting (x1, . . . , xn) = (et1 , . . . , etn).

Question 2.11 (1 point). a) Prove Minkowski’s first inequality:

V1(K,L) ≥ |K|
n−1
n |L|

1
n

(similar to the isoperimetric inequality discussed in class).
b) Prove Minkowski’s quadratic inequality: for convex bodies K and L in Rn,

V2(K,L) · |K| ≤ V1(K,L)2.

Hint: Use the Brunn–Minkowski inequality to extract information about d2

dt2
|K + tL|1/n.

Question 2.12 (1 point). (Added at Alex’s request.) Give an example of a (rough, non-
convex) set K such that the limit

lim
ϵ→0

|K + ϵBn
2 | − |K|
ϵ

does not exist, and

lim inf
ϵ→0

|K + ϵBn
2 | − |K|
ϵ

< lim sup
ϵ→0

|K + ϵBn
2 | − |K|
ϵ

.
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Question 2.13 (1 point). Show that any convex function V : Rn → R is
a) continuous on the support of e−V (i.e., on the set where V does not take the value ∞);
b) of class C2 almost everywhere on the support of e−V .

Question 2.14 (1 point). a) Suppose V ∈ C2(Rn). Show that for all z1, z2 ∈ Rn,

V

(
z1 + z2

2

)
+ β(z1, z2) =

V (z1) + V (z2)

2
, (10)

where, letting z(t) = (1−t)z1+(1+t)z2
2

, we have

β(z1, z2) =
1

8

ˆ 1

−1

(1 − |t|)⟨∇2V (z(t))(z1 − z2), z1 − z2⟩ dt ≥ 0. (11)

b) Conclude that the convexity of a C2-smooth function is equivalent to the non-negativity
of its Hessian.

Question 2.15 (2 points). a) Show that for any pair of convex bodies K and L, the function
|K + tL| is a polynomial in t of degree n.
b) Conclude that

|K + tL| =
n∑
k=0

(
n

k

)
Vk(K,L)tk.

This is called the Steiner polynomial.

Question 2.16 (2 points). Let K be a convex set. Define the Gauss map νK : ∂K → Sn−1

by νK(x) = {nx}, where nx is the outer normal to ∂K at x (this set is a singleton almost
everywhere). Define the surface area measure SK on the sphere Sn−1 by

SK(Ω) = |ν−1
K (Ω)|n−1

for every Borel measurable Ω ⊂ Sn−1. Here | · |n−1 denotes the (n−1)-dimensional Hausdorff
measure, i.e., for M ⊂ ∂K, |M |n−1 =

´
M

in the usual sense.
a) Show that for any pair of convex bodies K and L,

V1(K,L) =
1

n

ˆ
Sn−1

hL(θ) dSK(θ).

In particular,

|K| =
1

n

ˆ
Sn−1

hK(θ) dSK(θ).

b) Use Minkowski’s first inequality to deduce that the surface area measure determines a
convex body uniquely up to translation. That is, if dSK = dSL, then K = L + v for some
vector v.
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Question 2.17 (2 points). Let K be a convex body. The projection of K onto the hyperplane
θ⊥ for some θ ∈ Sn−1 is defined as

K|θ⊥ = {x ∈ θ⊥ : ∃t ∈ R such that x+ tθ ∈ K}.

a) Prove the Cauchy projection formula for a symmetric convex body K:

|K|θ⊥|n−1 =
1

2

ˆ
Sn−1

|⟨θ, u⟩| dSK(u).

b) Suppose K and L are symmetric convex bodies such that for every θ ∈ Sn−1,

|K|θ⊥|n−1 = |L|θ⊥|n−1.

Conclude that K = L+ v for some v ∈ Rn.

Question 2.18 (1 point). Let h ∈ C2(R2) be the support function of a strictly convex,
compact region K ⊂ R2. Show that the surface area measure fK has a density given by

fK(u) = h(u) + ḧ(u)

for all u ∈ S1. Note: h+ ḧ is invariant under translations of K.

Question 2.19 (10 points). Prove (perhaps using elementary Harmonic Analysis?) that for
every pair of π-periodic infinitely smooth functions ψ and h on [−π, π], such that h+ ḧ > 0
and h > 0, one has(ˆ π

−π
(h2 − ḣ2) du

)(ˆ π

−π

(
ψ2 − ψ̇2 + ψ2h+ ḧ

h

)
du

)
≤ 2

(ˆ π

−π
(hψ − ḣψ̇) du

)2

. (12)

(Note: the assumption is π-periodic rather than 2π-periodic. I can provide an explanation
or motivation upon request.)

Question 2.20 (2 points). Prove the Rogers-Shephard inequality. For a convex body K ⊂
Rn, define the difference body

K −K = {x− y : x, y ∈ K}.

Show that

|K −K| ≤
(

2n

n

)
|K|.

Hint: Use the Brunn–Minkowski inequality to show that |K∩(x+K)|1/n is a concave function
supported on K −K, and can be estimated from below by 1 − ρK−K(x). Using this estimate
(among others), show that

|K|2 =

ˆ
K−K

|K ∩ (x+K)| dx ≥
(

2n

n

)−1

|K| · |K −K|.
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Question 2.21 (2 points). Prove the Grünbaum inequality: Let K be a convex body whose
barycenter is at the origin (i.e.,

´
K
x dx = 0). Show that for any θ ∈ Sn−1, one has

|{x ∈ K : ⟨x, θ⟩ ≥ 0}| ≥
(

n

n+ 1

)n
|K| ≥ |K|

e
.

Question 2.22 (3 points). Prove Busemann’s theorem: Given x ∈ Rn \ {0}, the function
|x|

|x⊥∩K| is convex on Rn. Conclude that it defines a norm. The unit ball of this norm is called
the intersection body of K.

Question 2.23. Derive the Santalo formula for the area of a convex region in R2:

|K| =
1

2

ˆ π

−π

(
h2 − ḣ2

)
dt,

where h is the support function of K.
Hint: Use Questions 2.18 and 2.16.

Question 2.24 (2 points). Using elementary Harmonic Analysis, prove that for every pair
of C1 periodic functions on [−π, π], one has(ˆ π

−π
h2 − ḣ2

)
·
(ˆ π

−π
ψ2 − ψ̇2

)
≤
(ˆ

hψ − ḣψ̇

)2

.

Explain why this provides an alternative solution to Question 2.11 b) on the plane (hint: use
Questions 2.23 and 2.16).

Question 2.25 (1 point). Prove the general version of Brunn’s principle: For a convex body
K ⊂ Rn and a k-dimensional subspace H, the function |K ∩ (y + H)|1/k is concave on its
support (inside H⊥), for k ∈ {1, . . . , n− 2}. (The case k = n− 1 was discussed in class.)

Question 2.26. Show that the convolution of log-concave functions is log-concave.
Hint: Use the fact that marginals of log-concave functions are log-concave, in dimension R2n.

Question 2.27 (1 point). Provide an alternative proof (to what was done in class) of the
Gaussian Poincaré inequality:ˆ

Rn

f 2dγ −
(ˆ

Rn

fdγ

)2

≤
ˆ
Rn

|∇f |2dγ

using the decomposition of f into the series of Hermite polynomials (the orthonormal system
with respect to the Gaussian measure — you can read about them, e.g., on Wikipedia).

Question 2.28 (1 point). As per our discussion in class, prove the following statement using
the Borell-Brascamp-Lieb inequality (Question 2.9).

Fix q ∈ (−∞,−n]. Let dµ = e−V dx be a probability measure, and let g be a C1 function.
Suppose V ∈ C2(Rn) and ∇2V − ∇V⊗∇V

q
≥ 0 (i.e., V is q-concave). Then, assuming all the

integrals below exist:
ˆ (

ge
V
q

)2
dµ−

(ˆ
ge

V
q dµ

)2

≤ −q
−q + 1

ˆ 〈
e−

2V
−q

(
∇2V +

∇V ⊗∇V
−q

)−1

∇g,∇g

〉
dµ.
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Question 2.29 (1 point). Deduce the Gaussian Poincaré inequality from the Gaussian Log-
Sobolev inequality via the linearization method (this is a partial case of the argument we
discussed in class).

Question 2.30 (1 point). Prove that the classical Gaussian Log-Sobolev inequality and the
classical Lebesgue Log-Sobolev inequality (as stated in class) are equivalent.

Question 2.31 (1 point). By differentiating the infimal convolution directly, prove the Gaus-
sian Log-Sobolev inequality without assuming convexity of f :

Entγ(f
2) ≤ 2

ˆ
|∇f |2,

for any f ∈ C1(Rn) for which the integrals converge.

Question 2.32 (1 point). Deduce the Sobolev inequality from the Log-Sobolev inequality for
the Lebesgue measure.

Question 2.33 (1 point). Show that the Gaussian Beckner inequality implies the classical
Gaussian Log-Sobolev inequality as p→ 2.

Question 2.34 (1 point). Deduce Nash’s inequality from the classical Lebesgue Log-Sobolev
inequality: for any non-negative f ∈ L2(Rn) ∩ C1(Rn),(ˆ

f 2dx

)1+ 2
n

≤ 2

πen

(ˆ
|∇f |2dx

)(ˆ
fdx

) 4
n

.

Question 2.35 (1 point). Deduce the isoperimetric inequality from the Sobolev inequality
for the Lebesgue measure.

Question 2.36 (1 point). Prove the following variant of the Generalized Log-Sobolev in-
equality: given a log-concave measure µ on Rn with density e−V , and any pair of smooth
convex functions f and g with

´
e−fdµ =

´
e−gdµ, one has

ˆ
g∗(∇f)e−fdµ ≥ n

ˆ
e−fdµ−

ˆ
⟨∇V, x⟩e−fdµ−

ˆ
fe−fdµ.

Question 2.37 (3 points). Is it possible to obtain Gaussian Beckner inequalities for p ∈ [1, 2)
via linearizations of (some) geometric inequalities directly?

Question 2.38 (2 points). Prove the following extension of the Borell-Brascamp-Lieb in-
equality due to Bolley, Cordero-Erasquin, Fujita, Gentil, and Guillin: for convex f and g on
Rn with n ≥ 2,

ˆ
(((1 − t)f + tg)∗)1−n ≥ (1 − t)

ˆ
(f ∗)1−n + t

ˆ
(g∗)1−n.

33



Question 2.39 (Generalized Sobolev, 2 points). Prove the following extension of the Sobolev
inequality due to Bolley, Cordero-Erasquin, Fujita, Gentil, and Guillin: for convex F and G
on Rn with n ≥ 2, such that

´
F−n =

´
G−n = 1, and assuming that G(x)

|x|γ → 0 as |x| → ∞
for some γ > n

n−1
, and that all integrals exist, we have

ˆ
G∗(∇F )F−n ≥ 1

n− 1

ˆ
G1−n.

Question 2.40 (Coredero-Erasquin’s proof of Colesanti inequality, 4 points). Prove the
following inequality: when K is a C2 convex body, II is its second fundamental form, and
f ∈ C1(∂K) is an arbitrary function such that

´
∂K
f = 0, then

ˆ
∂K

tr(II)f2 − ⟨II−1∇∂Kf,∇∂Kf⟩ ≤ 0.

Here, ∇∂Kf stands for the intrinsic boundary gradient of f . Compare to Question 2.11 part
b).

Hint: Use the Brascamp-Lieb inequality with V (x) =
h2K(x)

2
and the “body polar coordinates”

formula: ˆ
K

F (x)dx =

ˆ ∞

0

ˆ
∂K

F (ty)tn−1⟨y, ny⟩dtdy,

where ny is the outer unit normal to ∂K at y, and dy stands for boundary integration.

Question 2.41 (1 point). Show that when φ : [−π, π] is C1, even, and periodic, then

ˆ π

−π
φ2 − 1

2π

(ˆ π

−π
φ

)2

≤ 1

4

ˆ π

−π
φ̇2.

Question 2.42 (1 point). Show that when φ : [−π, π] is C1, periodic, and φ(0) = 0, then

ˆ π

−π
φ2 ≤ 4

ˆ π

−π
φ̇2.

Question 2.43 (1 point). Show that the Brascamp-Lieb inequality is ”the end of the line” for
the linearization method: let dµ(x) = e−V (x)dx and plug the function f(x) = ⟨∇V (x), θ⟩+ ϵφ
into Brascamp-Lieb:

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤
ˆ
⟨(∇2V )−1∇f,∇f⟩dµ,

and observe that while ⟨∇V (x), θ⟩ indeed attains equality in the above inequality, and the
terms corresponding to ϵ cancel out as well, the only inequality that results is again the
Brascamp-Lieb inequality.

34



Question 2.44 (1 point). Let µ be a log-concave probability measure on Rn with density
e−V for some convex function V , and let the associated Laplacian be Lu = ∆u− ⟨∇u,∇V ⟩.
Let λ1 > 0 be the first non-trivial eigenvalue of L, i.e., the smallest number such that there
exists a non-zero function f1 with

Lf1 = −λ1f1.

Show that

λ1 = inf
f∈W 1,2(dµ)

´
|∇f |2dµ´
f 2dµ

= inf

´
|∇f |2dµ´

f 2dµ−
(´

fdµ
)2 .

Hint: use general convexity/compactness considerations to show the infimum is attained by
some function f1. Then consider f = f1 + ϵg and argue that the derivative with respect to ϵ
of that ratio must vanish. Conclude that f has to be an eigenfunction (using general PDE
arguments).

Question 2.45 (1 point). Show that for a positive definite matrix A,

det(Id + tA) = 1 + t · tr(A) +
t2

2
∥A∥2HS + o(t2),

where ∥A∥2HS is the square of the Hilbert-Schmidt norm (i.e., the sum of the squares of all
entries).

Question 2.46 (3 points). Show that one can improve the Gaussian Log-Sobolev inequality

to the following: suppose dµ = e−V−x2

2
−n log

√
2πdx = e−V dγ is a probability measure. Then

−
ˆ
V dµ ≤

´
x2dµ− n

2
+
n

2
log

(
2 +

´
|∇V |2dµ−

´
x2dµ

n

)
.

Question 2.47 (1 point). Prove the following improvement of the Brascamp-Lieb inequality
in the unconditional case (recall that a function f(x) is called unconditional if f(ϵ1x1, ..., ϵnxn) =
f(x) for every x ∈ Rn and choice of signs ϵi ∈ {−1, 1}; i.e., f is invariant under coordinate
reflections).

Suppose f, w are unconditional and w is convex. Then for the probability measure dµ =
Ce−wdx one has:

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤
ˆ
⟨(∇2w + T )−1∇f,∇f⟩dµ,

where T = diag
[

1
x1

∂w
∂x1
, ..., 1

xn
∂w
∂xn

]
.

Hint: use the multiplicative version of the Prekopa-Leindler inequality for unconditional
functions, as in Question 2.10.
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Question 2.48 (2 points, important question). a) Prove the second part of Lemma 7.9 (from
the notes) concerning the second derivative of the Legendre transform of an interpolation:
for a family of convex functions vt such that vt(x) ∈ C2(x, t), one has

d2

dt2
v∗t (x) = −v̈t(∇v∗t ) +

〈
(∇2vt(x))−1∇v̇t(∇v∗t ),∇v̇t(∇v∗t )

〉
.

b) Use it to deduce the Brascamp-Lieb inequality from the Prekopa-Leindler inequality
directly, without passing through the Generalized Log-Sobolev inequality. Namely, note that
the Prekopa-Leindler inequality implies that

d2

dt2

ˆ
e−(f+tg)∗ ≤ 0,

and compute to confirm that this is equivalent to the Brascamp-Lieb inequality

ˆ
φ2dµ−

(ˆ
φdµ

)2

≤
ˆ
⟨(∇2V )−1∇φ,∇φ⟩dµ,

with dµ = e−V dx, where V = f ∗, and φ(x) = g(∇f ∗(x)), assuming
´
dµ = 1.

3 Gaussian Measure and its special properties

3.1 A general discussion

Recall that the Gaussian Measure on Rn is given by

dγ(x) =
1√
2π

n e
−|x|2

2 dx.

We have already seen that it has many wonderful properties, including:
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• It is a Log-concave isotropic probability measure; to check the isotropicity, note

ˆ
⟨x, θ⟩2 dγ =

ˆ
x2i dγ = 1.

• It is the only measure both product and rotation invariant

• Linear images of Gaussian random vectors are determined by their Covariance matrix

• Gaussian measure plays the main role in the Central Limit Theorem (and is preserved
by convolutions)

• It is extremal for Log-Sobolev inequality

• It is extremal for Reverse Log-Sobolev inequality

• It corresponds to the equality case in the functional Blaschke-Santaló inequality

• It is extremal for the Entropy Power Inequality

• There is a nice “Gaussian Fourier system” called Hermite polynomials

• It satisfies the Poincaré inequality with constant 1

• It satisfies the B-theorem and an improved Poincaré inequality for symmetric functions
with constant 1

2
...

It is worthwhile mentioning also:

Theorem 3.1 (Gaussian Correlation Inequality, Royen [29]). If A,B are symmetric convex
sets in Rn, then

γ(A ∩B) ≥ γ(A) · γ(B).

In adition to Royen [29], see also the exposition by Latala, Matlak [24] in regards to the
above breakthrough result.

The following Proposition is a way to quantify that the Gaussian measure is “a role
model” for all isotropic probability measures (and especially for log-concave ones). Recall
Cp(µ), the Poincare constant associated with a measure µ, is the smallest number such that
for all f :

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤ Cp(µ)

ˆ
|∇f |2 dµ.

Proposition 3.1. Suppose µ is an isotropic probability measure. Then

Cp(µ) ≥ 1 = Cp(γ).
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Proof. Recall the fact that µ is isotropic implies that
´
xdµ = 0, i.e. ∀i

´
xidµ = 0. Also

∀θ ∈ Sn−1,
´
⟨x, θ⟩2 dµ = 0, and in particularˆ

x2i dµ = 1.

So,

1 =

ˆ
x2i dµ−

(ˆ
xidµ

)2

≤ Cp(µ)

ˆ
1dµ = Cp(µ)

In this section, we shall see several very strong isoperimetric-properties and phenomena
which are unique to the Gaussian measure.

3.2 The isoperimetric profile

Recall the Isoperimetric problem for general (probability) measures µ. The objective of this
problem is to find

inf
µ(A)=a

µ+(∂A)

for a given a ∈ [0, 1], where the weighted perimeter is defined as

µ+(∂A) = lim inf
ε→0

µ(A+ εBn
2 \A)

ε
.

Definition 3.1. The isoperimetric profile of µ is defined as

Iµ(a) = inf
µ(A)=a

µ+(∂A).

Below are some properties of Iµ(a).

• For non-atomic measures, Iµ(a) ≥ 0, Iµ(a) → 0 as a→ 0, and Iµ(a) → 0 as a→ 1

• Iµ(a− 1
2
) is even. One can see this by taking complements, i.e. µ(A) = 1 − µ(Ac) but

they have the same perimeters µ+(∂A) = µ+(∂Ac).

• Iµ is convex for log-concave measures (proved by E. Milman [26])
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Remark 3.1. Consider for example the Lebesgue measure |A| = a, then |∂A| ≥ cn · a1/n,
and we have concavity. Recall that the proof of this followed from the Brunn-Minkowski
inequality.

So to obtain an isoperimetry bound for a general log-concave measure, one may try to
use the Prekopa-Leindler inequality.

µ+(∂K) = lim inf
ε→0

µ(K + εBn
2 ) − µ(K)

ε

= lim inf
ε→0

µ
(

(1 − t) K
1−t + t

εBn
2

t

)
− µ(K)

ε

≥ sup
t

lim inf
ε→0

µ
(
K
1−t

)1−t
µ
(
εBn

2

t

)t
− µ(K)

ε
.

However, one cannot hope to get a sharp bound because the Prekopa-Leindler inequality is
never tight!

3.3 The Ehrard Inequality

The Ehrard inequality is a fancier and tighter Gaussian version of the Prekopa-Leindler
inequality.

Definition 3.2. The Gaussian cumulative distribution function (c.d.f.) is denoted as

Φ(s) =

ˆ s

−∞

1√
2π
e−t

2/2dt = γ1(−∞, s)

Note that

Φ′(s) =
1√
2π
e−s

2/2.

We will be considering the inverse Φ−1 : [0, 1] → R.
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We are ready to state arguably the most important Gaussian Isoperiemtric-type inequal-
ity, proved by Ehrhard for convex sets [15], [14] then by Latala when one of the sets is convex
[22], and finally by Borell [10], [11] for arbitrary Borel-measurable sets:

Theorem 3.2 (Ehrard-Borell). For all Borel measurable sets A,B ⊂ Rn, ∀ λ ∈ (0, 1),

Φ−1(γ(λA+ (1 − λ)B)) ≥ λΦ−1(γ(A)) + (1 − λ)Φ−1(γ(B)).

Other proofs are given by Neeman and Paouris [28], van Handel [18] and Ivanisvili [20],
among others.

Let us compare this to Prekopa-Leindler. Gaussian measure is log-concave, which means
that

log γ(λA+ (1 − λ)B) ≥ λ log(γ(A)) + (1 − λ) log(γ(B))

Consider the function
m(t) = γ((1 − t)A+ tB).

Ehrard’s inequality says that Φ−1 ◦m is concave, while Prekopa-Leindler says that logm is
concave.

Claim 3.1. Ehrhard’s inequality is stronger than the Prekopa-Leindler inequality for the
Gaussian measure: for any strictly increasing function m Φ−1 ◦ m is concave implies that
logm is concave

Proof. We consider the local form of the functions. Notice that Φ−1 ◦m is equivalent to the
fact that

(Φ−1 ◦m)′′ ≤ 0,

and log ◦m is concave is equivalent to the fact that

(log ◦m)′′ ≤ 0.

In general, we have
(f ◦m)′′ = f ′′ · (m′)2 + f ′m′′ ≤ 0,

40



which is true if and only if
m′′

(m′)2
≤ −f

′′

f ′

for f ′ > 0. So relating this back to Ehrard, we have

m′′

(m′)2
≤ −(Φ−1)′′

(Φ−1)′
,

and for Prekopa-Leindler, we have

m′′

(m′)2
≤ −(log)′′

(log)′
.

To prove that Ehrard is stronger than Prekopa-Leindler, we prove the following key claim

∀t : −(Φ−1(t))′′

(Φ−1(t))′
≤ −(log(t))′′

(log(t))′
. (13)

We compute each component of this inequality

(log(t))′′

(log(t))′
= −1/t2

t/t
= −1

t

(Φ−1(t))′ =
1

Φ′(Φ−1(t))
=

√
2πeΦ

−1(t)2/2

(Φ−1(t))′′ = 2πΦ−1(t) · eΦ−1(t)2/2

=⇒ (Φ−1(t))′′

(Φ−1(t))′
=

√
2πΦ−1(t)eΦ

−1(t)2/2.

The fact that 13 implies the overall claim is equivalent to saying that

−
√

2πΦ−1(t)eΦ
−1(t)2/2 ≥ 1

t
. (14)

Why is 14 true? Indeed, if a = Φ−1(t), then (14) becomes

− 1

Φ(a)
≤

√
2πaea

2/2

If a ≥ 0, the inequality is trivially true. If a ≤ 0, we have to show that
ˆ a

−∞
e−t

2/2dt ≤ −1

a
e−a

2/2.

Change of variables b = −a gives us
ˆ ∞

b

e−t
2/2dt ≤ 1

b
e−b

2/2
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when b ≥ 0. To see why the above inequality is true, notice thatˆ ∞

b

e−t
2/2dt =

ˆ ∞

b

t · 1

t
e−t

2/2dt

≤ 1

b

ˆ ∞

b

te−t
2/2dt

=
1

b
e−b

2/2

So the claim is proved.

Remark 3.2. What is the geometric meaning of Φ−1(a), for a ∈ [0, 1]. Consider the half
space

H = {x ∈ Rn : x1 ≤ α}.
Then γ(H) = a means that Φ−1(a) = α. Indeed,

Φ(α) = γ1(−∞, α) = γn(H) = a.

Compare this to f(t) = t1/n - the (multiple of) the radius of the ball of Lebesgue volume t
(see the below remark).

Remark 3.3. van Handel, Shenfeld [19] fully characterized the equality cases in Ehrhard’s
inequality.

In particular, the equality in the Ehrhard inequality is attained when A,B are parallel
half-spaces. Indeed,

A = {x ∈ Rn : x1 ≤ Φ−1(a)}, γ(A) = a

B = {x ∈ Rn : x1 ≤ Φ−1(b)}, γ(B) = b

Then
A+B

2
=

{
x ∈ Rn : x1 ≤

Φ−1(a) + Φ−1(b)

2

}
.

So

Φ−1

(
γ

(
A+B

2

))
=

Φ−1(γ(A)) + Φ−1(γ(B))

2
=

Φ−1(a) + Φ−1(b)

2

the point where A+B
2

intersects the x-axis.
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3.4 Gaussian isoperimetric inequality

Ehrhard’s inequality implies the following classical and important result:

Theorem 3.3 (The Gaussian Isoperimetric inequality, Sudokov-Tsirelson [32], Borell [11]).
If A is a Borel measurable in Rn with γ(A) = a ∈ [0, 1], then

γ+(∂A) ≥ γ+(∂Ha) =
1√
2π
e−Φ−1(a)2/2

where Ha is the halfspace of measure a

Ha = {x ∈ Rn : x1 ≤ Φ−1(a)}.

In other words,

Iγ(a) =
1√
2π
e−Φ−1(a)2/2.

Note that this implies that

Iγ(a) =
1

Φ−1(a)′
,

and that
Iγ(a) · I ′′γ (a) = −1.

Proof. (of the Gaussian isoperimetry via Ehrhard) Let K be some Borel set in Rn. Then

γ+(∂K) = lim inf
ε→0

γ(K + εBn
2 ) − γ(K)

ε

= sup
λ>0

lim inf
ε→0

γ
(

(1 − λ) K
1−λ + λ

εBn
2

λ

)
− γ(K)

ε

≥ lim inf
ε→0, λ→0

Φ
(

(1 − λ)Φ−1
(
K

1−λ

)
+ λΦ−1

(
εBn

2

λ

))
− γ(K)

ε
,
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where the last inequality follows from Ehrard’s inequality. Now let t = ε
λ
. t can be anything

since ε and λ can tend to 0 at different rates. It turns out the optimal case is taking t→ ∞.
Since γ(K) = a, the last line of the above becomes (by Taylor’s Theorem)

= lim
t→∞

Φ′(Φ−1(a)) · Φ−1(∂(tBn
2 ))

t
= lim

t→∞
Φ′(Φ−1(a))

=
1√
2π
e−Φ−1(a)2/2

= γ+(∂Ha).

The fact that limt→∞
Φ−1(∂(tBn

2 ))

t
= 1 is left as homework.

One can then ask the question about an anisotropic version of this. In other words,
instead of taking Bn

2 , take some set L (this is left as homework).

3.5 Gaussian concentration inequality and Borell’s noise stability

Theorem 3.4 (Gaussian concentration inequality and Borell’s noise stability).

γ(At) ≥ 1 − 1

2
e−t

2/2

if γ(A) ≥ 1/2. Moreover, if H is a half-space with γ(A) = γ(H) = a ∈ [0, 1], we have

γ(At) ≥ γ(Ht) = Φ(Φ−1(a) + t).

Proof. Let
h(t) = Φ−1(γ(At)).

Note that

h′(t) =
√

2πe
Φ−1(γ(At))

2

2 · d
dt
γ(At) ≥

γ+(∂At)

Iγ(γ(At))
≥ 1.

Above, the second to last inequality follows from the Gaussian isoperimetric inequality, and
the last inequality follows from the definition of the isoperimetric profile. We will now apply
Newton’s formula

h(t) = h(0) +

ˆ t

0

h′(s)ds ≥ h(0) +

ˆ t

0

ds = h(0) + t

=⇒ Φ′(γ(At)) ≥ Φ−1(γ(A)) + t,

which implies
γ(At) ≥ Φ(Φ−1(γ(A)) + t) = γ(Ht),
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where γ(A) = γ(H).
Next, suppose γ(A) ≥ 1/2. Then Φ−1(γ(A)) ≥ 0, and

γ(At) ≥ Φ(Φ−1(γ(A)) + t) ≥ Φ(t) =
1√
2π

ˆ ∞

−t
e−s

2/2ds,

or

1 − γ(At) ≤
1√
2π

ˆ ∞

t

e−s
2/2ds.

It now suffices to show
1√
2π

ˆ ∞

t

e−s
2/2ds ≤ 1

2
e−t

2/2.

Consider for t > 0,

F (t) =
1√
2π

ˆ ∞

t

e−s
2/2ds− 1

2
e−t

2/2,

and thus

F ′(t) = − 1√
2π
e−t

2/2 − t

2
e−t

2/2

and

F ′′(t) =
t√
2π
e−t

2/2 − 1

2
e−t

2/2 +
t2

2
e−t

2/2.

Observe that

F ′

(√
2

π

)
= 0,

and

F ′′(t) ≥ 0 if and only if t ≥
√

2

π
.

Note also that
F → 0 as t→ ∞,

and that F (0) = 0. This means that F is concave and non-decreasing on [0,
√

2
π
] (and thus

is non-negative on that interval), and convex and non-increasing on [
√

2
π
,∞], and as it also

tends to zero at infinity, we conclude that it must remain non-negative. This concludes the
proof.

3.6 Gaussian symmetrization and the proof of the Ehrhard in-
equality

The following concept was introduced by Ehrhard [15], [14], see also Borell [10] and Bogachev
[7].
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Definition 3.3 (Gaussian symmetrization). Fix an integer k, 1 ≤ k ≤ n. Fix also L, a
subspace of Rn with dimL = n−k. Fix any e ⊥ L. Then for a Borel measurable set A ⊂ Rn,
consider the Gaussian symmetrization of A denoted by

S(L, e)(A)

such that for all x ∈ L

S(L, e)(A) ∩ (x+ L⊥) = {y : ⟨y, e⟩ ≥ r} ∩ (x+ L⊥)

where r = r(x) is chosen so that

γk(S(L, e)(A) ∩ (x+ L⊥)) = γk(A ∩ (x+ L⊥)).

Here are some examples:

• If L = e⊥1 and e = e1 , then S(e⊥1 , e1)(A) =
{
x ∈ Rn : x1 ≤ Φ−1

1 (γ(A))
}

;

• If k = n− 1, then this corresponds to matching (n− 1)-dimensional slices of set A to
rays J of a 2-dimensional set.

Some properties of the Gaussian symmetrization are left as homework:

Lemma 3.1. Let A and B be Borel-measurable sets in Rn and v ∈ Rn. Then

• γ(S(L, e)(A)) = γ(A);

• A ⊂ B =⇒ S(L, e)(A) ⊂ S(L, e)(B);

• S(L, e)(A+ v) = S(L, e)(A) + v.

Also,

Lemma 3.2. Let L1, L2 be linear subspaces such that (L1 ∩ L2)
⊥ ∩ L1 and (L1 ∩ L2)

⊥ ∩ L2

are orthogonal. Then

S(L1, e) ◦ S(L2, e) = S(L2, e) ◦ S(L1, e) = S(L1 ∩ L2, e)
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This implies:

Corollary 3.1. Let n ≥ 3 and k ≥ 2. Then for all k-symmetrizations S = S(L, e), there is
a sequence of 2-symmetrizations S1, . . . , Sk−1 such that S = S1 ◦ . . . ◦ Sk−1.

Furthermore,

Lemma 3.3. In dimension 2, there exists a sequence θ1, . . . , θk, . . . such that

S(θ⊥k , θk) ◦ S(θ⊥k−1, θk−1) ◦ . . . ◦ S(θ⊥1 , θ1)(A)

converges in Hausdorff distance to a half-space of the same Gaussian measure as A.

Combining Corollary 3.1 and Lemma 3.3 we get

Corollary 3.2. The statement of Lemma 3.3 is true in any dimension.

Remark 3.4. If A is a half-space, then it is invariant under any symmetrizations.

Next, we formulate:

Theorem 3.5. If A is a closed set in Rn, then for all L and for all e ∈ L⊥,

S(L, e)(A) + rBn
2 ⊂ S(L, e)(A+ rBn

2 ).

Proof. Home work!

Remark 3.5. The previous Theorem implies the Gaussian isoperimetric inequality, when
combined with Corolalry 3.2 (without going via Ehrhard’s inequality).

Finally, the following result is crucial in our proof of Ehrhard’s inequality, and its proof
is based on all the results above, and is left as a home work:

Theorem 3.6. If A is an open convex set in Rn, then for all L and for all e ∈ L⊥, then
S(L, e)(A) is convex.

Proof. Home work!

We are now ready to prove the Ehrhard inequality for convex sets A and B. Recall
that it states that for any λ ∈ [0, 1],

Φ−1 (γ (λA+ (1 − λ)B)) ≥ λΦ−1(γ(A)) + (1 − λ)Φ−1(γ(B)). (15)

The idea is to consider n-dimensional convex sets A and B as parallel sections of an (n+ 1)-
dimensional convex set, symmetrize it into a 2-dimensional convex set, and the convexity of
this set (which follows from Theorem 3.6) is exactly the statement of Ehrhard’s inequality
(15).
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Proof. (of Ehrhard’s inequality for convex sets.)
Consider A,B as subsets of Rn+1: let

Ã = A× {0},

B̃ = B × {0}

and C = conv(Ã, B̃). Then

C ∩
{
e⊥n+1 +

1

2
en+1

}
=
A+B

2
∩
{
e⊥n+1 +

1

2
en+1

}

Take n-symmetrizations in Rn+1 of C such that intersections with n-dimensional hyper-
planes are preserved. Let

Cλ = e⊥n+1 ∩ (C − λen+1) = e⊥n+1 ∩ (λA+ (1 − λ)B)

and
f(λ) = Φ−1(γ(Cλ))

Then by definition of symmetrization

(λen+1 + e⊥n+1) ∩ S(C) = (en+1 + e⊥n+1) ∩ {x ∈ Rn : ⟨x, e⟩ ≥ r}

where r = −f(λ). By Theorem 3.6, the set S(C) is convex, or equivalently f(λ) is concave.
Therefore,

Φ−1(γ(Cλ)) is convex,

yielding
⇐⇒ Φ−1(γ(λA+ (1 − λ)B)) ≥ λΦ−1(γ(A)) + (1 − λ)Φ−1(γ(B)).
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3.7 The Lata la’s Functional Ehrhard inequality

In this subsection, we present the functional version of the Ehrhard inequality which was
observed by Lata la [23]

Theorem 3.7 (Functional Ehrhard’s inequality, Lata la [23]). Let λ ∈ [0, 1], and suppose
F,G,H : Rn → [0, 1] are such that for all x, y ∈ Rn,

Φ−1(H(λx+ (1 − λ)y)) ≥ λΦ−1(F (x)) + (1 − λ)Φ−1(G(y)). (16)

Then

Φ−1

(ˆ
Rn

Hdγ

)
≥ λΦ−1

(ˆ
Rn

Fdγ

)
+ (1 − λ)Φ−1

(ˆ
Rn

Gdγ

)
.

Therefore, for convex f, g,

Φ−1

(ˆ
Φ(−(λf + (1 − λ)g)∗dγ

)
≥ λΦ−1

(ˆ
Φ(−f ∗)dγ

)
+ (1 − λ)Φ−1

(ˆ
Φ(−g∗)dγ

)
.

In other words, Φ−1
(´

Φ(−(f + tg)∗dγ
)

is concave. Here, as before, f ∗ stands for Legendre
transform.

Remark 3.6. As before, one may note that (λf ∗ + (1 − λ)g∗)∗ = f□λg satisfies (16) and
this is why one can reformulate it in terms of Legendre transform.

Proof. Consider A,B ⊂ Rn × R = Rn+1 given by

A =
{

(x, y) : y ≤ Φ−1(F (x))
}

B =
{

(x, y) : y ≤ Φ−1(G(x))
}
.

A and B are subgraphs, and x ∈ Rn, y ∈ R. Then the condition of the theorem implies

λA+ (1 − λ)B ⊂
{

(x, y) : y ≤ Φ−1(H(x))
}
⊂ Rn+1. (17)

Ehrhard’s inequality in Rn+1 implies

Φ−1 (γ(λA+ (1 − λ)B)) ≥ λΦ−1(γ(A)) + (1 − λ)Φ−1(γ(B)). (18)

Then (17) and (18) imply
Φ−1(γ((x, y) : y ≤ Φ−1(H))) ≥

λΦ−1(γ((x, y) : y ≤ Φ−1(F ))) + (1 − λ)Φ−1(γ((x, y) : y ≤ Φ−1(G))).

This implies the desired inequality, in view of the fact that by Fubini

γ((x, y) : y ≤ Φ−1(F )) =

ˆ
Fdγ.

Remark 3.7. Functional Ehrhard also tensorizes (this is left as homework). But the base
case of the induction (the 1-dimensional case) is difficult.
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3.8 Generalized Bobkov’s inequality via linearizing functional Ehrhard’s
inequality

In this subsection we will do the same procedure with Ehrhard’s inequality that allowed
us to deduce the Generalized Log-Sobolev inequality from the Prekopa-Leindler inequality,
following Barthe, Cordero-Erausquin, Ivanisvili, Livshyts [5]. We remark that an alternative
procedure which involved linearization of the geometric Ehrhard inequality directly (rather
than its functional version) was done by Kolesnikov and Milman [21], and a number of
interesting geometric corollaries was obtained. It remains unclear if there are direct links
between the work in [21] and what we are about to present.

Consider

α(t) = Φ−1

(ˆ
Φ(−((1 − t)f + tg)∗dγ

)
− (1 − t)Φ−1

(ˆ
Φ(−f ∗)dγ

)
− tΦ−1

(ˆ
Φ(−g∗)dγ

)
.

Then Functional Ehrhard’s inequality Theorem 3.7 implies

α(t) ≥ 0 for all t ∈ [0, 1]

and
α(0) = 0

=⇒ α′(0) ≥ 0.

Recall

Φ′(s) =
1√
2π
e−

s2

2 ,

and
d

da
Φ−1(a) =

1

Φ′(Φ−1(a))
=

√
2πe

Φ−1(a)2

2 =
1

I(a)
,

where

I(a) =
1√
2π
e−

Φ−1(a)2

2

is the Gaussian isoperimetric profile. Recall that d
dt

((1 − t)f + tg)∗ = (f − g)(∇f ∗) (see
Lemma 2.2). We then write

α′(0) =
1

I
(´

Φ(−f ∗)
) · ˆ 1√

2π
e−

f∗2
2 · −(f(∇f ∗) − g(∇f ∗))dγ

+ Φ−1

(ˆ
Φ(−f ∗)dγ

)
− Φ−1

(ˆ
Φ(−g∗)dγ

)
≥ 0.
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So we have

♠(f) +

ˆ
g(∇f ∗) · 1√

2π
e−

f∗2
2 dγ ≥ I

(ˆ
Φ(−f ∗)dγ

)
· Φ−1

(ˆ
Φ(−g∗)dγ

)
,

where ♠(f) is a function that depends on only f and not g. Set G = g∗, f ∗ = −Φ−1(h) for
function h. Then

∇f ∗ = − ∇h
I(h)

,

I(h) =
1√
2π
e−

f∗2
2 ,

♠(h) +

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· Φ−1

(ˆ
Φ(−G)dγ

)
.

Recall (
λG
(x
λ

))∗∣∣∣
z

= sup
y

(
⟨y, z⟩ − λG

(y
λ

))
= λ sup

t
(⟨t, z⟩ −G (t))

= λG∗(z).

where we did a change of variables t = y
λ
. Then for every λ,

♠(h) +

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· Φ−1

(ˆ
Φ
(
−λG

(x
λ

))
dγ

)
.

We divide both sides by λ and let λ→ ∞. Note that ♠(h)
λ

→ 0, and we get:

Theorem 3.8 (“Generalized Bobkov’s inequality”, Barthe, Cordero-Erasquin, Ivanisvili,
Livshyts [5]). For all convex G and for all h (such that the integrals make sense)

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· lim
λ→∞

Φ−1
(´

Φ
(
−λG

(
x
λ

))
dγ
)

λ
.

Remark 3.8. If G is ray-increasing, we have

G
(x
λ

)
≥ G(0).

Thus

lim
λ→∞

Φ−1
(´

Φ
(
−λG

(
x
λ

))
dγ
)

λ
≤ lim

λ→∞

Φ−1
(´

Φ (−λG (0)) dγ
)

λ

= lim
λ→∞

−λG(0)

λ
= −G(0).

In fact, often ≥ holds as well. Note that ray increasing means that ∀t > 0, ∀θ ∈ Sn−1, G(tθ)
is increasing in t.
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We will consider the following example

G(x) =

{
−
√

1 − |x|2 if |x| ≤ 1

∞ if |x| > 1
.

Φ
(
−λG

(x
λ

))
dγ =

ˆ
λBn

2

Φ
(√

λ2 − x2
)
dγ ≈ Φ(λ),

and

lim
λ→∞

Φ−1 (Φ(λ))

λ
= 1.

We leave the details of this limit as a home work.

Recall (Example 2.2, part 5) that G∗(x) =
√

1 + |x|2. Note that

I(h)G∗
(

∇h
I(h)

)
≥ I(h)

√
1 +

|∇h|2
I(h)2

=
√
I(h)2 + |∇h|2.

Plugging this G into Theorem 3.8 we deduce the following celebrated inequality of Bobkov
(which was originally proved via different means).

Theorem 3.9 (Bobkov [6]).ˆ
Rn

√
I(h)2 + |∇h|2 ≥ I

(ˆ
Rn

hdγ

)
.

The inequality tenzorizes, so one can use induction in dimension and so-called 2-point
symmetrizations for the proof, as was done in [6]. Several alternative proofs were given by
Barthe, Ivanisvili [4], Carlen, Kerce [12], Neeman, Paouris [28], among others. The proof
that was presented in these notes is by Barthe, Cordero-Erausquin, Ivanisvili, Livshyts [5].

Remark 3.9. Bobkov’s inequality is implies (and in fact follows from) the Gaussian isoperi-
metric inequality. Indeed, let h = 1K and so |∇h| = hx1{x∈∂K}. The LHS of the inequality
is γ+(∂K) and the RHS is I(γ(K)). So we have

γ+(∂K) ≥ I(γ(K)) = γ+(∂H),

where H is a half-space and γ(H) = γ(K). See e.g. Neeman [27] for the opposite implication.

So we get the following “diagram”:

Ehrhard −→ Prekopa-Leindler

↓ ↓
Generalized Bobkov −→ Generalized log-Sobolev

↓ ↓
Bobkov −→ Log-Sobolev

↕ ↕
Gaussian Isoperimetry Classical isoperimetry
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Consider now another example:

G(x) =

{
−1 if ∥x∥K ≤ 1

∞ if ∥x∥K > 1

Then G∗(x) = 1 + hK(x) = 1 + ∥x∥Ko , and we get:

Corollary 3.3.

I

(ˆ
hdγ

)
· lim
λ→∞

Φ−1(Φ(λ)γ(λK))

λ
≤
ˆ

|∇h|dγ +

ˆ
I(h)dγ.

In particular, for K = Bn
2

I

(ˆ
hdγ

)
−
ˆ
I(h)dγ ≤

ˆ
|∇h|dγ.

Remark 3.10. The last inequality is weaker than Bobkov’s inequality since

ˆ
Rn

√
I(h)2 + |∇h|2 ≤ I

(ˆ
hdγ

)
−
ˆ
I(h)dγ.

Remark 3.11. More generally for

G(x) =

{
− p
√

1 − |x|p if ∥x∥K ≤ 1

∞ if ∥x∥K > 1
,

one can obtain p-Bobkov inequalities.

3.9 An Ehrhard-Brascamp-Lieb type inequality

We will now differentiate Ehrhard’s inequality twice to obtain a version of Ehrhard-Brascamp-
Lieb inequality. Note that Theorem 3.7 implies that

d2

dt2
Φ−1

(ˆ
Φ(−(f + tg)∗)dγ

)
≤ 0 (19)

The left hand side of the above equals to

d

dt

[
1

I
(´

Φ(−f ∗
t )
) · ˆ e−

f∗2t
2 · 1√

2π
(−1)

d

dt
f ∗
t dγ

]
.

Recall d
dt
f ∗
t = −g(∇f ∗

t ). So this becomes (after evaluating at t = 0).
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= −
I ′
(´

Φ(−f ∗
t )
)

I2
(´

Φ(−f ∗
t )
) · (ˆ e−

f∗2
2 · 1√

2π
g(∇f ∗)dγ

)2

+
1

I
(´

Φ(−f ∗
t )
) · (ˆ −f ∗e−

f∗2
2 · −1√

2π
g(∇f ∗)2dγ

)
+

1

I
(´

Φ(−f ∗
t )
) · (ˆ e−

f∗2
2 · −1√

2π

d2

dt2
f ∗
t dγ

)
.

We recall, by Lemma 2.2:

d2

dt2
f ∗
t = −

〈
∇2f∇f∗∇g(∇f),∇g(∇f)

〉
= −

〈(
∇2W

)−1∇ϕ,∇ϕ
〉
,

where ϕ = g(∇f ∗) and W = f ∗. With this change of variables, and in view of the computa-
tion above, we see that (19) amounts to:

Theorem 3.10 (Barthe, Cordero-Erasquin, Ivanisvili, Livshyts [5]). Consider convexW ≥ 0

and consider the probability measure dµ = e−
W2

2
+Cdγ, let

a =

ˆ
Φ(−W )dγ ∈ [0, 1],

and

A =

ˆ
e−

W2

2 dγ · Φ−1(a)eΦ
−1(a)2/2.

Then for any locally Lipschitz function h,
ˆ
h2Wdµ− A

(ˆ
hdµ

)2

≤
ˆ 〈(

∇2W
)−1∇h,∇h

〉
dµ.

Remark 3.12. In fact, one could deduce Theorem 3.10 by linearizing Theorem 3.8, similar
to how we deduced the Brascamp-Lieb inequality from the Generalized Log-Sobolev inequality;
this is left as a home work. In fact, as we pointed out before, one could also deduce Brascamp-
Lieb by taking the second derivative of Prekopa-Leindler inequality; this was also left as a
home work.

3.10 Home work

Question 3.1 (3 points). Find an alternative proof of Bobkov’s inequality by approximating
the Gaussian measure by the uniform measure on the Hamming cube.

Question 3.2 (1 point). Verify that

ϕ−1(γ(tBn
2 ))

t
→t→∞ 1.

(recall that we used this fact to deduce the Gaussian Isoperimetric Inequality from Ehrhard’s
inequality).
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Question 3.3 (1 point). Deduce the Gaussian Isoperimetric Inequality directly from Bobkov’s
inequality.

Question 3.4 (2 points). Prove Kahane’s inequality: let g1, ..., gk, ... be a sequence of i.i.d.
N(0, 1) random variables. For any q ≥ p > 0, any n ≥ 1 and any z1, ..., zn ∈ Rn we have(

E∥
n∑
i=1

gizi∥q
) 1

q

≤ αq
αp

(
E∥

n∑
i=1

gizi∥p
) 1

p

,

where
αp = (E|gi|p)

1
p .

Question 3.5 (2 points). Prove the following properties of Ehrhard symmetrizations. Let
S = S(L, e) be a Gaussian symmetrization and A and B be arbitrary closed sets. Then

• γ(S(A)) = γ(A) provided that A is Borel measurable

• If A ⊂ B then S(A) ⊂ S(B)

• For a vector v, S(A+ v) = S(A) + v

• If A1 ⊂ A2 ⊂ ... are open sets and A = ∪∞
i=1Ai then S(A) = ∪ni=1S(Ai)

Question 3.6 (1 point). Let L1 and L2 be two sub-spaces in Rn such that (L1 ∩ L2)
⊥ ∩ L1

and (L1 ∩ L2)
⊥ ∩ L2 are orthogonal. Then

S(L1, e) ◦ S(L2, e) = S(L2, e) ◦ S(L1, e) = S(L1 ∩ L2, e).

Question 3.7 (1 point). Let n ≥ 3 and k ≥ 2. Show that for every k−symmetrization S
there exist 2-symmetrizations S1, ..., Sk−1 such that S = S1 ◦ ... ◦ Sk=1. Hint: use Question
3.6.

Question 3.8 (1 point). In dimension 2, show that there is a sequence θ1, ..., θk, ... ∈ Sn−1

such that letting Si = S(θ⊥i , θi) ◦ ... ◦S(θ⊥1 , θ1), one has for every set A, that Si(A) converges
to a half-space of the same Gaussian measure as A.

Question 3.9 (2 points). Prove, for any ϵ > 0, any Gaussian symmetrization S and any
set A :

S(A) + ϵBn
2 ⊂ S(A+ ϵBn

2 ).

Conclude that the Ehrhard symmetrization decreases the Gaussian Perimeter. Using Ques-
tions 3.8 and 3.7, conclude the Gaussian Isoperimetric Inequality (directly without passing
via the Ehrhard inequality).

Question 3.10 (2 points). Prove that the Gaussian symmetrization of any convex set is
also convex. (recall that this was a crucial step in proving Ehrhard’s inequality.)
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Question 3.11 (2 points). Find lower estimates on the isoperimetric profile of some product
measures of your choice (beyond the uniform measure on the cube and the Gaussian).

Question 3.12 (4 points). Solve the isoperimetric problem on the square in dimension 2:
prove that if |A ∩ [0, 1]2| = a ∈ [0, 1] then |∂A ∩ [0, 1]2| is bounded from below by the case of
A being either an appropriately shifted ball, or a half-space.

Question 3.13 (3 points). Let L be a convex body. Find a lower estimate for the anisotropic
Gaussian perimeter of a set A with γ(A) = a, that is

lim inf
ϵ→0

γ(A+ ϵL) − γ(A)

ϵ
.

For which L is it sharp?

Question 3.14 (2 points). Prove the simple case of the Gaussian Correlation Inequality
(called the Sidak Lemma): let K and L be a pair of symmetric strips. Then γ(K ∩ L) ≥
γ(K)γ(L).

Hint: use the Prekopa-Leindler inequality.

Question 3.15 (1 point). Prove the Gaussian Log-Sobolev inequality by linearizing Bobkov’s
inequality.

Question 3.16 (1 point). Show that the functional Ehrhard inequality tensorizes, i.e. that
from knowing it in dimensions k and m one can deduce it in the dimension k +m.

Question 3.17 (5 points). Try and find the proof of Functional Ehrhard Inequality in di-
mension one, without using the geometric Ehrhard.

Question 3.18 (1 point). Verify that for a ∈ [0, 1],

η(a) =
√

2πaΦ−1(a)eΦ
−1(a)2/2 ≥ −1. (20)

Question 3.19 (3 points). In class we showed that if K is any convex set, γ(K) = a ∈ [0, 1],
then letting η(a) as in (20) we have

1

γ(K)

ˆ
K

⟨x, θ⟩2 dγ +
η(a)

γ(K)2

(ˆ
K

⟨x, θ⟩ dγ
)2

≤ 1.

Find an alternative proof of this fact using Ehrhard’s inequality, or perhaps the consequences
of Ehrhard’s inequality – the generalized Bobkov inequality or the Ehrhard-Brascamp-Lieb
inequality which we deduced in class.
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4 The Blaschke-Santaló inequality

4.1 Steiner symmetrization

Steiner symmetrization is a technique which was invented by Jacob Steiner to prove the
isoperimetric inequality in 1837. Given a hyperplane θ⊥ and a set K, take every one-
dimensional section of K parallel to θ and replace it with the interval symmetric about θ⊥,
of the same length. Then take a union of all these intervals, and get the Steiner symmetral
of K about θ⊥. This new set, which is denoted Sθ(K), has the same volume as K (as we
shall explain below), and it has in many ways better “isoperimetric properties” than K. In
modern geometry this technique is used for various purposes, and we will see several uses of
it in this course. We now proceed with a formal definition.

Definition 4.1 (Steiner symmetrization). Let θ ∈ Sn−1, and K ⊆ Rn Borel-measurable.
The Steiner symmetrization of K is

Sθ(K) =
⋃
y∈θ⊥

Sθ(K ∩ {y + tθ : t ∈ R})

where Sθ(K∩{y+tθ : t ∈ R}) is the interval symmetric about θ⊥, contained in {y+tθ : t ∈ R},
and of length equal to the Lebesgue measure of the set K ∩ {y + tθ : t ∈ R}.

Remark 4.1. Note that Borel-measurability of K implies that for every y ∈ θ⊥, the set
K ∩ {y + tθ : t ∈ R} is measurable.

We observe the key property of Steiner symmetrization – the fact that it preserves volume:

Claim 4.1. |K| = |Sθ(K)|.
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Proof. Using Fubini’s theorem, we write

|K| =

ˆ
θ⊥

ˆ ∞

−∞
|K ∩ {y + tθ : t ∈ R}|1dt =

ˆ
θ⊥

ˆ ∞

−∞
|Sθ(K) ∩ {y + tθ : t ∈ R}|1dt = |Sθ(K)|.

Now we define a notion of Hausdorff distance between convex bodies.

Definition 4.2 (Hausdorff distance). The Hausdorff distance between convex bodies K,L ⊆
Rn is defined as

dH(K,L) = inf{t > 0: ∃α > 0 s.t. K ⊆ αL ⊆ tαK}.

Properties of the Steiner symmetrization

• Sθ(K) is convex whenever K is convex.

• circ(K) ≥ circ(Sθ(K)) where the circum-radius is defined as

circ(L) = inf{s > 0: ∃y ∈ Rn, L ⊆ sBn
2 + y}.

• inrad(K) ≤ inrad(Sθ(K)) where the in-radius is defined as

inrad(K) = sup{t > 0: ∃y ∈ Rn, tBn
2 + y ⊆ K}.

• λSθ(K) = Sθ(λK) for all λ ≥ 0.

• Sθ is continuous in the Hausdorff distance.

• Sθ(K) + Sθ(L) ⊆ Sθ(K + L).

• |∂Sθ(K)|n−1 ≤ |∂K|n−1.

• diam(K) ≥ diam(Sθ(K)), where the diameter of a set A is

diam(A) = sup
x,y∈A

|x− y|.

We leave these properties as a home work.
At last, we prove another very important fact about Steiner symmetrization: successive

Steiner symmetrizations of a given set converge to the Euclidean ball (of the same volume).

Claim 4.2. There exists a sequence {θk} ⊂ Sn−1 such that for all convex bodies K,

K,Sθ1(K), Sθ2(Sθ1(K)), ...→ RBn
2

where R = |K|1/n
|Bn

2 |1/n
, and the convergence is in the Hausdorff distance.
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Sketch proof. Since K is compact, there exists t > 0 such that K ⊂ tBn
2 . Consider the

family Ω of all successive Steiner symmetrals of K. Note that by our properties, all of
these symmetrals are also contained in tBn

2 . Let r = infL∈Ω circ(L) (where once again
circ(L) stands for the circum-radius), and consider a sequence of radii rk → r, with the
corresponding bodies Qk.

The Blaschke selection theorem (see e.g. [1]) states that for any family of convex bodies
contained in tBn

2 , there exists a convergent sub-sequence. Since circ(K) ≥ circ(Sθ(K)), there
exists a sequence {Lk} ⊆ Ω such that Lk converges to L with circ(L) = r > 0.

We claim that L is a ball. Indeed, suppose not. Then L misses a cap of the ball rBn
2 .

By compactness we may cover the boundary of the ball rBn
2 with rotations of this cap,

corresponding to directions θ1, ..., θm. Then, symmetrizing L with respect to θ1, ..., θm, we
get a body with a strictly smaller in-radius, which contradicts our choice of L.

4.2 The formulation of the Blaschke-Santaló inequality

Let K be a symmetric convex body, recall

K◦ = {x : ∀y ∈ K, ⟨x, y⟩ ≤ 1}

is its polar. Some notable examples include (Bn
2 )o = Bn

2 and, more generally, (Bn
p )o = Bn

q

where p, q ∈ [1,∞] with 1
p

+ 1
q

= 1

Let T a linear operator. Recall that (TK)◦ = (T−1)⊤K◦. The volume product |K| · |K◦|
is affine invariant:

|TK| · |(TK)◦| = detT |K| detT−1|K◦| = 1 · |K| · |K◦| = |K| · |K◦|

In particular, for any ellipsoid E,

|E| · |E◦| = |Bn
2 |2 ∼

(
2πe2

n

)n
,

and for any parallelpiped P ,

|P | · |P ◦| = |Bn
∞| · |Bn

1 | =
4n

n!
∼ (4e)n

nn
.

We formulate the celebrated

Theorem 4.1 (Blaschke-Santalo inequality [30]). For any symmetric convex body K,

|K| · |K◦| ≤ |Bn
2 |2

And what about the estimate from below?

Conjecture 4.1 (Mahler, 1937 (symmetric version)). For a symmetric convex body K in
Rn, |K| · |K◦| ≥ 4n

n!
= |Bn

∞| · |Bn
1 |.

Mahler proved it in dimension 2, but also see home work. Iryeh, Shibata proved it
in dimension 3, and their proof was later simplified by Fradelizi, Hubard, Meyer, Roldan-
Pensado, Zvavitch.
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4.3 Proof of the symmetric Blaschke-Santalo inequality

The proof uses Steiner symmetrization. We shall show:

Lemma 4.1. |K◦| ≤ |Su(K)◦| for all u ∈ Sn−1.

Proof. WLOG, suppose u = en. We write

Sen(K) = {(x,
s− t

2
) : (x, s), (x, t) ∈ K}

Therefore,

Sen(K)◦ = {(y, z) : ⟨x, y⟩ + z
s− t

2
≤ 1 ∀(x, s), (x, t) ∈ K}

Define the slice L(r) = {x ∈ Rn−1 : (x, r) ∈ K} for L ⊆ Rn. Consider

K◦(r) +K◦(−r)
2

= {y + z

2
: ⟨x, y⟩ + sr ≤ 1, ⟨w, z⟩ − tr ≤ 1, ∀(x, s), (w, t) ∈ K}.

By reducing the number of restrictions, we obtain

K◦(r) +K◦(−r)
2

⊆ {y + z

2
: ⟨x, y⟩ + sr ≤ 1, ⟨x, z⟩ − tr ≤ 1, ∀(x, s), (x, t) ∈ K}

⊆ {y + z

2
: ⟨x, y + z

2
⟩ +

s− t

2
r ≤ 1 ∀(x, s), (x, t) ∈ K}

= {v : ⟨x, v⟩ +
s− t

2
r ≤ 1 ∀(x, s), (x, t) ∈ K}

= Sen(K)◦(r).
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Next, |K(r)| is an even function of r because K is symmetric. By the Brunn-Minkowski
inequality, ∣∣∣∣K◦(r) +K◦(−r)

2

∣∣∣∣ ≥√|K◦(r) · |K◦(−r)| = |K◦(r)|,

which implies |Sen(K)◦(r)| ≥ |K◦(r)|. Therefore, using Fubini’s theorem, we get

|K◦| =

ˆ ∞

−∞
|K◦(r)| dr ≤

ˆ ∞

−∞
|Sen(K)◦(r)| dr = |Sen(K)◦|.

In order to derive the Blaschke-Santalo inequality from Lemma 4.1, we select a sequence
of directions such that the successive symmetrizations of K approach a ball, and note that
the polar volume increases along this sequence, while the volume remains preseved. Namely,

choose a sequence u1, u2, . . . such that Suk,...,u1K → RBn
2 , where R = |K|1/n

|Bn
2 |1/n

. Then

|K| · |K◦| ≤ |RBn
2 ||(RBn

2 )◦| = |Bn
2 |2.□

4.4 Functional version of the Blaschke-Santalo inequality

Below we present a functional version of the Blaschke-Santalo inequality. Introduced by
Ball [3]. We shall see that it implies the usual (geometric) Blaschke-Santalo inequality;
our proof will also be based on the geometric version, following the work of Arstein-Avidan,
Klartag, Milman [2]. For simplicity, we focus on the symmetric version, but a non-symmetric
functional Blaschke-Santalo is available too [2]. We recommend also the proof by Lehec [25]
which did not rely on the geometric Blaschke-Santalo inequality.

Theorem 4.2 (Ball [3]; Arstein-Avidan, Klartag, Milman [2]; Lehec [25]). If ψ : Rn → R is
an even function such that

´
e−ψ <∞, then

ˆ
e−ψ ·

ˆ
e−ψ

⋆ ≤
(
e−x

2/2
)2

= (2π)n.

Recall that given a function ψ, the function ψ∗ is the smallest of the functions φ which
satisfy for every x, y ∈ Rn the inequality ψ(x) + φ(y) ≥ ⟨x, y⟩. Therefore, we get:

Corollary 4.1. Suppose that f, g : Rn → R are such that f(x) · g(y) ≤ e−⟨x,y⟩, then
ˆ
f ·
ˆ
g ≤ (2π)n.

Proof of theorem 4.2. For any constant c, we have (ψ + c)⋆ = ψ⋆ − c, and so we can assume
that ψ ≥ 0. Moreover, we assume that ψ(0) = 0 which implies that ψ⋆(0) = 0 and ψ⋆ ≥ 0.

Furthermore, we can assume without loss of generality that ψ is convex. Indeed, otherwise
we can replace the left hand side with ψ∗∗ and it only increases.
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We have ˆ
Rn

e−ψ dx =

ˆ ∞

0

|{e−ψ > t}| dt

=

ˆ ∞

0

e−s|{ψ < s}| ds,

where the first equality follows by the Fubini theorem, the second equality applies the change
of variable t = e−s. Similarly, we obtainˆ

Rn

e−ψ
⋆

dx =

ˆ ∞

0

e−s|{ψ⋆ < s}| ds.

We make the following claim.

Claim 4.3. For any s, t ≥ 0,

{ψ⋆ < t} ⊂ (s+ t) · {ψ < s}◦.

Proof. Consider x ∈ {ψ < s} and y ∈ {ψ⋆ < t} and note that it suffices to show that
⟨x, y⟩ ≤ (s+ t). By the property of the Legendre transform, we know that

⟨x, y⟩ ≤ ψ(x) + ψ⋆(y) ≤ s+ t.

Consider the following three functions on R+:

• f(s) = e−s · |{ψ < s}|

• g(t) = e−t · |{ψ⋆ < t}|

• h(x) = |Bn
2 | · 2n/2 · e−x · xn/2

We will apply the Prekopa-Leindler inequality on these functions. First, we claim that

h

(
s+ t

2

)
≥
√
f(s) · g(t).

Indeed, we can write

h2
(
s+ t

2

)
= |Bn

2 |2 · 2n · e−(s+t)) ·
(
s+ t

2

)n
= |Bn

2 |2 · e−s · e−t · (s+ t)n .

We have,

f(s) · g(t) = e−s · |{ψ < s}| · e−t · |{ψ⋆ < t}|
≤ e−s · |{ψ < s}| · e−t · (s+ t)n · |{ψ < s}◦|

≤ e−s · e−t · (s+ t)n · |Bn
2 |2 = h2

(
s+ t

2

)
,
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where the first inequality uses Claim 4.3, and the second inequality uses the Blaschke-
Santalo inequality. Thus, the three functions satisfy the conditions of the Prekopa-Leindler
inequality, and we get

ˆ
e−ψ ·

ˆ
e−ψ

⋆

=

ˆ
e−s|ψ < s| ·

ˆ
e−t|ψ⋆ < t| ≤

(ˆ
e−x · xn/2

)2

· 2n · |Bn
2 |2 = (2π)n.

Remark 4.2. Setting ψ(x) =
||x||2K

2
and ψ⋆(x) =

||x||2
K◦
2

, and integrating in polar coordinates
recovers the usual Blaschke-Santalo inequality (see home work).

Remark 4.3. The equality case occurs if and only if ψ(x) = |x|2
2
, as was shown in [2].

We also mention the following theorem (see HW).

Theorem 4.3 (Fradelizi-Meyer [16]). Consider even functions f, g : Rn → R such that for
all x, y,∈ Rn, f(x) · g(y) ≤ ρ(⟨x, y⟩) whenever ⟨x, y⟩ ≥ 0. Then,(ˆ

f

)
·
(ˆ

g

)
≤
(ˆ

ρ
(
|x|2
))2

.

This holds for any ρ : R+ → R+.

4.5 Linearizing Theorem 4.2.

Take ψ = |x|2
2

+ ϵf for some function f . Then, we have

ˆ
e
−
(

|x|2
2

+ϵf

)
·
ˆ
e
−
(

|x|2
2

+ϵf

)⋆

≤ (2π)n.

Recall that

v⋆t = vt − tv̇t(∇vt) −
t2

2
v̈t(∇vt) +

t2

2
⟨(∇2vt)

−1∇[v̇t|∇vt ],∇[v̇t|∇v∗t (x)]⟩.

Then (
|x|2

2
+ ϵf

)⋆
=

|x|2

2
− ϵf +

ϵ2

2
|∇f |2 + o(ϵ2),

since ∇v0 = x and ∇2v0 = Id. So, we have (up to the terms of order o(ϵ2)):ˆ
e−

|x|2
2

−ϵf ·
ˆ
e−

|x|2
2

+ϵf− ϵ2

2
|∇f |2 ≤ (2π)n.

Using e−δ = 1 − δ + δ2

2
(up to lower order terms), we get

(2π)n ≥
(ˆ

e−
|x|2
2 ·
(

1 − ϵf +
ϵ2

2
f 2

))
·
(ˆ

e−
|x|2
2 ·
(

1 − ϵf +
ϵ2

2
|∇f |2 − ϵ2f 2

2

))
+ o(ϵ2).
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Dividing both sides by (2π)n gives

1 ≥
(ˆ (

1 − ϵf +
ϵ2

2
f 2

)
dγ

)
·
(ˆ (

1 − ϵf +
ϵ2

2
|∇f |2 − ϵ2f 2

2

)
dγ

)
+ o(ϵ2).

where dγ is the Gaussian measure. We note that the constant terms cancel out, and so do
the terms which are multiplied by ϵ. Collecting the terms multiplied by ϵ2 gives the following
inequality:

Theorem 4.4. For all even functions f , we have

ˆ
Rn

f 2 dγ −
(ˆ

Rn

f dγ

)2

≤ 1

2

ˆ
Rn

|∇f |2 dγ.

Remark 4.4. Note the improved the constant as compared to the Gaussian Poincare’s in-
equality which we obtained from Theorem 2.6.

Remark 4.5. We note that using the non-symmetric version of the Blaschke-Santalo in-
equality, it suffices to assume

´
∇f dγ = 0, as integrating by parts, we obtain

ˆ
∂f

∂xi
dγ =

ˆ
⟨∇f,∇xi⟩ dγ = −

ˆ
f · Lγxi dγ =

ˆ
f · xi dγ.

So,
´
∇f dγ = 0 is equivalent to showing that for all linear functions ⟨x, θ⟩, we have´

f ·⟨x, θ⟩ dγ = 0. This implies that the second eigenvalue of the Ornstein–Uhlenbeck operator
is 2.

Remark 4.6. The same result could be obtained using methods of Fourier Analysis and the
decomposition into Hermite polynomials.

4.6 Blaschke-Santaló type inequality with non-round extremizers

Theorem 4.5 (Colesanti, Kolesnikov, Livshyts, Rotem). Let p > 1 and let V be an even
strictly convex p-homogeneous C2 function on Rn.

Assume that V is an unconditional function such that for every x ∈ Rn with non-negative

coordinates, the function V
(
x

1
p

1 , ..., x
1
p
n

)
is concave in x. Then inequality

ˆ
e−Φ(x)dx

(ˆ
e−

1
p−1

Φ∗(∇V (y))dy

)p−1

≤
(ˆ

e−V (x)dx

)p
(21)

as well as the inequality

Varµf ≤
(

1 − 1

p

)ˆ
⟨(D2V )−1∇f,∇f⟩dµ. (22)

hold for every unconditional convex Φ.
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Assume, in addition, that for every coordinate hyperplane H, with unit normal e, for
every x′ ∈ H, the function φ : [0,+∞) → R defined by

φ(t) = detD2V ∗(x′ + te)

is decreasing. Then the same pair of inequalities hold for every even convex Φ.

Corollary 4.2. Let V = c|x|pq . Then inequality (21) and (22) holds in the following cases:

1. For p ≥ q > 1 and unconditional Φ

2. For p ≥ q ≥ 2 and even Φ.

Proposition 4.1. Let p > 1 and let V be an even strictly convex p-homogeneous C2 function
on Rn. Inequality (21) holds for arbitrary convex proper function Φ if and only if inequality

|K| · |∇V ∗(Ko)|p−1 ≤
∣∣∣∣{V ≤ 1

p

}∣∣∣∣p (23)

holds for arbitrary compact convex body K.
If inequality (23) holds, the equality is attained when K is a level set of V : K = {V ≤ α}.

We conclude with an unusual isoperimetric-type inequality in which the minimizers are
not round.

Corollary 4.3. Suppose p ≥ 2. Let K be a symmetric convex body in Rn, n ≥ 2. Then|K|

(ˆ
K◦

n∏
i=1

|xi|
2−p
p−1dx

)p−1
 ≤ |Bn

p |p,

with equality when K = Bn
p .

4.7 Home work

Question 4.1 (1 point). Let P be a polytope given by

P = {x ∈ Rn : ⟨x, ui⟩ ≤ ai, ∀i = 1, ..., N},

for some unit vectors u1, ..., uN and positive numbers a1, ..., aN , and suppose that P is bounded.
Show that

P o = ¯conv

{
u1
a1
, ...,

uN
aN

}
.

Conclude that (Bn
1 )o = Bn

∞.
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Question 4.2 (1 point). In this question, K and L stand for convex bodies in Rn with
non-empty interior, containing the origin.

a) Prove that Koo = K.
b) Prove that for a linear operator T : Rn → Rn with detT ̸= 0,

(T tK)o = T−1Ko.

Conclude that a polar of an ellipsoid is an ellipsoid.
c) Prove that

(Bn
p )o = Bn

q ,

where 1
p

+ 1
q

= 1, for all p, q > 1.

d) Prove that
(K ∩ L)o = conv(Ko ∪ Lo).

e) Prove that for every subspace H of Rn

(K|H)o ∩H = Ko ∩H.

f) Prove that if K ⊂ L, one has Lo ⊂ Ko.
g) Prove that if K is symmetric then Ko is symmetric.
h) Show that for any (possibly non-convex) set A, we have Ao = (conv(A))o. Conclude

that the polar is always a convex set.

Question 4.3 (1 point). Let K be a symmetric convex body. Show that if K = Ko then
K = Bn

2 .

Question 4.4 (1 point). Show that for any symmetric convex body K, we have

hK(θ)ρKo(θ) = 1

for all θ ∈ Rn.

Question 4.5 (3 points). Verify Mahler’s conjecture in R2 for symmetric polygons: show
that for any symmetric polygon P in R2,

|P | · |P o| ≥ 8.

Question 4.6 (1 point). Given a Borel measurable set A in Rn, a function α : A→ R and
a vector v ∈ Rn \ 0, consider the shadow system

Kt = conv{x+ α(x)v : x ∈ A},

and define the convex body

K̃ = conv{x+ tα(x)en+1} ⊂ Rn+1.

Show that for u ∈ e⊥n+1,
hKt(u) = hK̃(u+ t⟨u, v⟩en+1).
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Question 4.7 (2 points). Prove the Blaschke-Santalo inequality using shadow systems.
Hint 1. Express |Ko

t | combining the formulas from Questions 4.4 and 4.6.
Hint 2. pass the integration on Sn−1 to the integration on Bn−1

2 = {x ∈ Rn : ⟨x, v⟩ = 0} with
the map x = θ − ⟨θ, v⟩v.
Hint 3: now extend the integration to Rn−1.
Hint 4. Conclude that |Ko

t | is −1-concave in t for any shadow system, using Question 2.9.
Hint 5. Notice that Steiner symmetrization can be realized as a shadow system, and, using
the fact that |Ko| = |K̄o| for any reflection K̄ of K, and the −1−concavity of |Ko

t | along any
shadow system, conclude that Steiner symmetrization increases |Ko|. Conclude the Blaschke-
Santalo inequality.
(this proof was discovered by Campi and Gronchi).

Question 4.8 (1 point). a) For any φ : R → R̄ one has φ∗ is a convex function.
b) If φ is convex then φ∗∗ = φ.
c) If f ≥ g then f ∗ ≤ g∗.
d) Find |x1|∗.
e) Find (

∥x∥qp
q

)∗.

f) For a convex body K, one has (− log 1K)∗ = hK .
g) For an a ∈ R, find (aφ)∗ in terms of φ∗.
h) Letting φa(x) = φ(ax) for some a ∈ R, find φ∗

a.
i) Show that (φ+ a)∗ = φ∗ − a, for any a ∈ R.
j) Show that

(f ∗ + g∗)∗(z) = inf
x,y∈Rn:x+y=z

(f(x) + g(y)) .

k) Fix α > 1. Show that is f is α−homogeneous (i.e. f(tx) = tαf(x) for all t ∈ R) then
f ∗(∇f) = (α− 1)f .
Hint: use one of the properties we proved in class, combined with the fact that for an
α−homogeneous function one has ⟨∇f, x⟩ = αf (verify this).

Question 4.9 (1 point). Find an alternative short proof of the functional Blaschke-Santalo
inequality for unconditional functions by passing the integration from Rn to the set

{x ∈ Rn : ∀i = 1, ..., n, xi ≥ 0},

and making a change of variables in the Prekopa-Leindler inequality given by (x1, ..., xn) =
(et1 , ..., etn). (see also a similar Question 2.10).

Question 4.10 (1 point). Show that the Santaló point of a convex body exists and is unique.

Question 4.11 (4 points). Find a statement and a proof for the Blaschke-Santalo inequality
and the functional Blaschke-Santalo inequality for non-symmetric convex sets and non-even
functions (as per our discussion in class).
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Question 4.12 (3 points). a) Note that the Blaschke-Santalo inequality on the plane is
equivalent to showing that for any even periodic function h ∈ C2([−π, π]), such that h ≥ 0
and h+ ḧ ≥ 0,

F (h) =

ˆ π

−π
h−2dt ·

ˆ π

−π
h2 − ḣ2dt ≤ 4π2.

(or equivalently, one may drop the even assumption and restrict to [0, π]).
Hint: use Question 4.4 to conclude that

|Ko| =
1

2

ˆ π

−π
h−2dt.

Also use Question 2.23.
b) Observe that the equality is attained when h is the support function of an ellipse.
c) Find some way to show that this inequality is true.

Option 1: maybe use basic Harmonic Analysis (I don’t know if it is possible and would
love to see it if it works)?

Option 2: maybe use variational approach? That is, suppose that a given function h
maximizes the functional F (h), argue* that it suffices to assume that h ∈ C1([−π, π]) and h >
0 and h+ ḣ > 0, then argue that for any ϵ > 0 and any even smooth ψ > 0, d

dϵ
F (h+ ϵψ) = 0,

and conclude some ODE that h must satisfy (in view of the arbitrarity of ψ). Then conclude
that the support function of an ellipsoid is the only type of function that satisfies this ODE.

* This “argue” may not be easy and you are encouraged to pursue other steps in this hint
even if this step is not clear at first.

Option 3: try whatever you like! :)

Question 4.13 (5 points). a) Find an example of a non-symmetric convex body for which
the Santaló point and the center of mass do not coincide.
b) How far could they be?
c) For a convex body K in Rn, let d(K) be the distance between the center of mass and the

Santaló point. How large could d(K)
diam(K)

be?

Question 4.14 (1 point). Let H be a Hanner polytope (as defined inductively in class).
Show that indeed

|H||Ho| =
4n

n!
.

Question 4.15 (2 points, Saint-Raimond’s theorem via Meyer’s proof). Prove the (symmet-
ric) Mahler conjecture in the case when the body K is unconditional (that is, it is symmetric
with respect to every coordinate hyperplane).
Hint 1: Note that the result is true in dimension 1 and proceed by induction.
Hint 2: Consider K+ = {x ∈ K : xi ≥ 0 ∀i = 1, ..., n}. Given a point x ∈ K+ consider n
cones

Ki = conv{x,K+ ∩ e⊥i }.
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Note that

|K| ≥ 2n
n∑
i=1

|Ki|,

write the above out to deduce that the vector with coordinates (...,
2|K∩e⊥i |
n|K| , ...) belongs to Ko

(use the unconditionality in the process).
Hint 3: Do the same argument for Ko, and then use properties of polarity along with the
fact that K ∩ e⊥i = K|e⊥i (which is another place where the fact that K is unconditional is
used!!!), to conclude that

|K||Ko| ≥ 4

n2

n∑
i=1

|K ∩ e⊥i | · |(K ∩ e⊥i )o|,

and use induction.

Question 4.16 (5 points). Iryeh and Shibata’s proof of Mahler’s conjecture in R3 followed
the same idea as in Question 4.15, and hinged on the fact that it is possible to bring a
symmetric convex body in R3 into a position where it is possible to split it into 8 parts
with coordinate hyperplanes so that each part has the same volume, and each of the three
coordinate hyperplane sections of K is split into four equal parts, and also each projection of
K onto coordinate hyperplane coincides with a section.
a) verify that this fact ensures the validity of Mahler conjecture (in the same way as above);
b) prove this challenging fact.

Question 4.17 (3 points). Verify the non-symmetric Mahler conjecture in dimension 2.

Question 4.18 (3 points). Using the ideas from Question 4.15, prove the result of Barthe,
Fradelizi: if a convex body K in Rn has all the symmetries of the regular simplex then it
verifies the non-symmetric Mahler conjecture, that is, |K||Ko| ≥ |Sn|2 where Sn is the self-
dual regular simplex.

Question 4.19 (10 points). Is it possible to use the ideas from Question 4.18 to prove the
non-symmetric Mahler conjecture in R3, that is, to show that for any convex body K in R3

one has |K||Ko| ≥ |S3|2 where S3 is the self-dual regular simplex? Maybe one could prove the
appropriate non-symmetric version of the fact proved by Iryeh and Shibata about bringing K
into a certain position?

Question 4.20 (2 points). Prove the following result of Fradelizi and Meyer: Mahler’s
conjecture is equivalent to the following functional version. For any convex function φ on
Rn one has ˆ

e−φ ·
ˆ
e−φ

∗ ≥ 4n.

Question 4.21 (2 points). Prove the following result of Fradelizi and Meyer which extends
the functional Blaschke-Santalo: let ρ : [0,∞) → [0,∞) be a measurable function and suppose
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f and g are even log-concave functions such that f(x)g(y) ≤ ρ2(⟨x, y⟩) whenever ⟨x, y⟩ ≥ 0.
Then ˆ

f ·
ˆ
g ≤

(ˆ
ρ(|x|2)

)2

.

Question 4.22 (5 points). We saw in class that the p−Beckner inequality on the circle for
periodic functions

1

2π

ˆ π

−π
f 2 −

(
1

2π

ˆ π

−π
fp
) 2

p

≤ (2 − p)
1

2π

ˆ π

−π
ḟ 2

holds not only for p ∈ [1, 2) but also for p = −2. By any chance, is it possible to argue
that there is a range of negative p for which this holds (rather than just one value p = −2)?
Maybe argue similarly to Question 2.33?

Question 4.23 (2 points). Show that Talagrand’s transport-entropy inequality implies the
Gaussian Poincare inequality.
Hint: linearize.

Question 4.24 (10 points). Try and make some progress on the question we discussed in
class: for any even log-concave measure µ and any symmetric convex body K one has

µ(K)µ(Ko) ≤ µ(Bn
2 )2.

Maybe you can find a proof in some partial case – for some class of measures, for uncondi-
tional measures/bodies, in dimension 2, etc?

Question 4.25 (1 point). Prove the symmetric Gaussian Poincare inequality

V arγ(f) ≤ 1

2
Eγ|∇f |2

for all even locally-Lipschitz functions f on Rn by using the decomposition into Hermite
polynomials (rather than by linearizing Blaschke-Santalo inequality like we did in class).

Question 4.26 (1 point). Show that the Blaschke-Santalo inequality and Fathi’s inequality
are in fact equivalent (in class we only deduced the latter from the former).

Question 4.27 (2 points). Prove the result of Saraglou.
a) See the lecture notes for the definition of the log-addition. Show that the Log-Brunn-
Minkowski inequality for Lebesgue measure∣∣∣∣K +0 L

2

∣∣∣∣ ≥√|K| · |L|

(for any symmetric convex bodies K and L in Rn) implies the Log-Brunn-Minkowski inequal-
ity for any even log-concave measure µ on Rn with full support:

µ

(
K +0 L

2

)
≥
√
µ(K)µ(L)
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(for any symmetric convex bodies K and L in Rn). Conclude that the Log-Brunn-Minkowski
conjecture implies the B-conjecture.
Hint: use the Prekopa-Leindler inequality.

b) Show the converse implication.
Hint: consider the situation near the origin and use the scale-invariance of the inequality in
the Lebesgue case.

Question 4.28 (2 points). Confirm that the validity of the B-conjecture for all rotation-
invariant log-concave measures is equivalent to the fact that for any even log-concave measure
µ,

µ(RBn
2 )µ

(
1

R
Bn

2

)
≤ µ(Bn

2 )2.

(recall that this corresponds to a very partial case and a sanity check in the Conjecture from
Question 4.24.)

Question 4.29 (2 points). Show Klartag’s theorem generalizing the functional Brunn-Minkowski
inequality: for any even log-concave measure µ,

ˆ
e−ϕdµ ·

ˆ
e−ϕ

∗
dµ ≤

(ˆ
e−

x2

2 dµ

)2

.

Hint: use Cafarelli’s contraction theorem.

Question 4.30 (10 points). Attempt to make any progress on the “original B-conjecture”:
let z ∈ Rn and let K be a symmetric convex set in Rn. Then the function

γ(tK + z)

γ(tK)

is non-decreasing in t ≥ 1. Here γ is the standard Gaussian measure.

Question 4.31 (2 points). Show that the B-theorem of Cordero-Erasquin, Fradelizi and
Maurey would follow from the confirmation of the conjecture from Question 4.30.

Hint: write the conclusion in terms of a non-negative derivative at t = 1; then note that
the arising inequality implies that certain function which depends on z ∈ Rn is increasing
along each ray, and therefore it is convex at the point z = 0. Consider the Laplacian in z.

Question 4.32 (2 points). Prove the result of Bobkov: the following are equivalent:

• For a symmetric convex body K of volume 1, the measure with the density

1√
2π

n
γ(K)

e−
x2

2 1K(x)dx

is isotropic.
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• For a symmetric convex body K of volume 1 and for any volume-preserving linear
transformation T on Rn, γ(K) ≥ γ(TK).

Hint: use the B-theorem.

Question 4.33 (3 points). Prove the improved Log-Sobolev inequality: for any convex func-
tion V on Rn such that

´
e−V = 1,

−
ˆ
V e−V ≤ n

2
log

´
∆V e−V

n
− n log

√
2πe.

Question 4.34 (10 points). Is it possible to deduce from the Reverse Log-Sobolev inequality
and/or the (generalized) Log-Sobolev inequality the following corollary of the Entropy Power
Inequality?

Let X and Y be any two centered random vectors in Rn and X ′ and Y ′ are independent
centered Gaussians (whose covariance matrices are scalar), such that h(X) = h(X ′) and
h(Y ) = h(Y ′). Then

h(X + Y ) ≥ h(X ′ + Y ′),

where

h(X) = −
ˆ
f log f,

where f is the density according to which X is distributed.

Question 4.35 (2 points). Find Fathi’s original proof for his inequality, which relies on the
Reverse Log-Sobolev inequality (which we discussed) as well as the following fact (following
from works of Cordero-Erasquin, Klartag and Santambrogio).

Let µ be a centered probability measure whose support has non-empty interior. Then
there exists an essentially continuous convex function φ, unique up to translations, such that
ρ = e−φdx is a probability measure on Rn whose push-forward by the map ∇φ is µ. Moreover,
it satisfies

ρ = argmin

{
−1

2
W2(µ, ν)2 + Entγ(ν)

}
.

Clarification: do not aim to prove this fact, only aim for the implication of Fathi’s theorem
from this fact combined with the Reverse Log-Sobolev.

Question 4.36 (1 point). Suppose u, v on Rn are 2-homogeneous convex functions. Prove
that ˆ

e−
u+v
2 det

(
∇2u+ ∇2v

2

)
≥

√ˆ
e−udet(∇2u) ·

ˆ
e−vdet(∇2v).

Hint: use the fact that for a 2-homogeneous function, 2u = ⟨∇u, x⟩ and the change of
variables that we used when proving the Reverse Log-Sobolev inequality, together with the
Prekopa-Leindler inequality.

Question 4.37 (1 point). Prove the conclusion of Question 4.24 under the assumption that
both K and µ are unconditional.
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[158] G. Polya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, (AM-27)
Princeton University Press, (1951).

[159] E. Putterman, Equivalence of the Local and Global Versions of the Lp−Brunn-
Minkowski Inequality, preprint, arxiv:1909.03729

[160] L. Rotem, A letter: The log-Brunn-Minkowski inequality for complex bodies, unpub-
lished.

[161] R. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28. Princeton
University Press, Princeton, NJ (1970).

[162] Th. Royen, A simple proof of the Gaussian correlation conjecture extended to multi-
variate gamma distributions, Far East J. Theor. Stat., Vol. 48, (2014), 139–145.

[163] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., Third Edition (1987).
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